• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 92
  • 68
  • 38
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 452
  • 53
  • 44
  • 38
  • 37
  • 34
  • 33
  • 26
  • 24
  • 21
  • 21
  • 20
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Influences of vegetation characteristics and invertebrate abundance of Rio Grande wild turkey populations, Edwards Plateau, Texas

Randel, Charles Jack 17 February 2005 (has links)
Since 1970, Rio Grande wild turkey (Meleagris gallapavo intermedia) numbers in the southern region of the Edwards Plateau of Texas have been declining. Nest-site characteristics and invertebrate abundance were hypothesized as limiting wild turkey numbers in declining regions. Wild turkeys were trapped and fitted with mortality-sensitive radio transmitters on 4 study areas; 2 within a region of stable (northern Edwards Plateau) populations, and 2 within a region of declining populations. Monitoring occurred from February 2001 to August 2003. Nest-site locations were determined via homing during the breeding season. Following nesting attempts/completions, nest fate, vegetation height, visual obstruction, litter depth, percent cover, and cover scores of forbs, grass, litter, and bare ground at each nest site and surrounding area were sampled. This was done to determine if wild turkey hens selected nest sites with vegetative characteristics differing from surrounding habitat. Brood survival was calculated as >1 poult surviving to 2-weeks. Broods were followed for 6-weeks post-hatch or to brood failure. Invertebrates were collected, via sweep-net and D-vac, at each visually confirmed brood location and a paired random site to determine if wild turkey hens selected brood habitat based on invertebrate abundance. Analyses were performed to determine if invertebrate abundance differed between study regions. Turkey hens selected nest sites with greater visual obstruction and more litter depth on both regions of stable and declining turkey abundance. No vegetative differences were detected between stable and declining region nest sites. Frequency of Orthoptera was 3–5 times greater at nest sites on stable regions than declining regions in all 3 years. Orthoptera is a noted food source for young galliformes and comprised the majority of dry mass in invertebrate samples, nest sites and brood locations, on both the stable and declining regions. No differences in total invertebrate dry mass were detected between regional brood locations. Nest-site vegetative characteristics did not alter nest success between regions. The 2 overall objectives of this study were to determine if nest-site vegetation characteristics and invertebrate abundance affected wild turkey numbers in the Edwards Plateau. Regional differences in vegetative characteristics were not detected, thus not likely to be causing differences in turkey numbers between regions. Nest-site invertebrates were found to be 3–5 times greater at stable region nest sites, possibly giving wild turkey poults from stable regions greater initial chances of survival.
162

Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau

Aichner, Bernhard January 2009 (has links)
The Tibetan Plateau is the largest elevated landmass in the world and profoundly influences atmospheric circulation patterns such as the Asian monsoon system. Therefore this area has been increasingly in focus of palaeoenvironmental studies. This thesis evaluates the applicability of organic biomarkers for palaeolimnological purposes on the Tibetan Plateau with a focus on aquatic macrophyte-derived biomarkers. Submerged aquatic macrophytes have to be considered to significantly influence the sediment organic matter due to their high abundance in many Tibetan lakes. They can show highly 13C-enriched biomass because of their carbon metabolism and it is therefore crucial for the interpretation of δ13C values in sediment cores to understand to which extent aquatic macrophytes contribute to the isotopic signal of the sediments in Tibetan lakes and in which way variations can be explained in a palaeolimnological context. Additionally, the high abundance of macrophytes makes them interesting as potential recorders of lake water δD. Hydrogen isotope analysis of biomarkers is a rapidly evolving field to reconstruct past hydrological conditions and therefore of special relevance on the Tibetan Plateau due to the direct linkage between variations of monsoon intensity and changes in regional precipitation / evaporation balances. A set of surface sediment and aquatic macrophyte samples from the central and eastern Tibetan Plateau was analysed for composition as well as carbon and hydrogen isotopes of n-alkanes. It was shown how variable δ13C values of bulk organic matter and leaf lipids can be in submerged macrophytes even of a single species and how strongly these parameters are affected by them in corresponding sediments. The estimated contribution of the macrophytes by means of a binary isotopic model was calculated to be up to 60% (mean: 40%) to total organic carbon and up to 100% (mean: 66%) to mid-chain n-alkanes. Hydrogen isotopes of n-alkanes turned out to record δD of meteoric water of the summer precipitation. The apparent enrichment factor between water and n-alkanes was in range of previously reported ones (≈-130‰) at the most humid sites, but smaller (average: -86‰) at sites with a negative moisture budget. This indicates an influence of evaporation and evapotranspiration on δD of source water for aquatic and terrestrial plants. The offset between δD of mid- and long-chain n-alkanes was close to zero in most of the samples, suggesting that lake water as well as soil and leaf water are affected to a similar extent by those effects. To apply biomarkers in a palaeolimnological context, the aliphatic biomarker fraction of a sediment core from Lake Koucha (34.0° N; 97.2° E; eastern Tibetan Plateau) was analysed for concentrations, δ13C and δD values of compounds. Before ca. 8 cal ka BP, the lake was dominated by aquatic macrophyte-derived mid-chain n-alkanes, while after 6 cal ka BP high concentrations of a C20 highly branched isoprenoid compound indicate a predominance of phytoplankton. Those two principally different states of the lake were linked by a transition period with high abundances of microbial biomarkers. δ13C values were relatively constant for long-chain n-alkanes, while mid-chain n-alkanes showed variations between -23.5 to -12.6‰. Highest values were observed for the assumed period of maximum macrophyte growth during the late glacial and for the phytoplankton maximum during the middle and late Holocene. Therefore, the enriched values were interpreted to be caused by carbon limitation which in turn was induced by high macrophyte and primary productivity, respectively. Hydrogen isotope signatures of mid-chain n-alkanes have been shown to be able to track a previously deduced episode of reduced moisture availability between ca. 10 and 7 cal ka BP, indicated by a 20‰ shift towards higher δD values. Indications for cooler episodes at 6.0, 3.1 and 1.8 cal ka BP were gained from drops of biomarker concentrations, especially microbial-derived hopanoids, and from coincidental shifts towards lower δ13C values. Those episodes correspond well with cool events reported from other locations on the Tibetan Plateau as well as in the Northern Hemisphere. To conclude, the study of recent sediments and plants improved the understanding of factors affecting the composition and isotopic signatures of aliphatic biomarkers in sediments. Concentrations and isotopic signatures of the biomarkers in Lake Koucha could be interpreted in a palaeolimnological context and contribute to the knowledge about the history of the lake. Aquatic macrophyte-derived mid-chain n-alkanes were especially useful, due to their high abundance in many Tibetan Lakes and their ability to record major changes of lake productivity and palaeo-hydrological conditions. Therefore, they have the potential to contribute to a fuller understanding of past climate variability in this key region for atmospheric circulation systems. / Das tibetische Hochplateau ist die größte gehobene Landmasse der Erde und beeinflusst maßgeblich atmosphärische Zirkulationsmuster wie den Asiatischen Monsun. Um die Auswirkungen zukünftiger Schwankungen der Monsundynamik auf das regionale Klima besser einschätzen zu können, ist es wichtig, ein fundiertes Verständnis vergangener Klimaänderungen zu entwickeln. Daher ist das Tibetplateau in den letzten Jahren mehr und mehr in den Fokus paläoklimatischer Studien gerückt. Die große Anzahl an Seen in der Region bietet ein unerschöpfliches Klimaarchiv und viele Studien haben sich bereits mit Seesedimenten zur Klimarekonstruktion befasst. Dabei wurde in erster Linie auf biologische, sedimentologische und geochemische Parameter zurückgegriffen, wohingegen organische Biomarker bisher recht selten benutzt wurden. Die vorliegende Arbeit untersucht die Anwendbarkeit dieser potentiellen Klimaindikatoren auf dem Tibetplateau. Hierbei wurde ein Schwerpunkt auf die Analyse kutikularer Blattwachse von Wasserpflanzen gelegt, da diese wegen ihres starken Auftretens in tibetischen Seen einen erheblichen Beitrag zur organischen Substanz im Sediment leisten. Um den Einfluss von Wasserpflanzen auf das Sediment über einen weiten klimatischen Gradienten zu untersuchen, wurden Oberflächensedimente und Wasserpflanzen vom zentralen und östlichen Tibetplateau auf ihre Biomarkerzusammensetzung sowie auf ihre Kohlen- und Wasserstoffisotopensignatur untersucht. Dadurch wurde das Verständnis über beeinflussende Faktoren auf diese Parameter in Sedimenten vertieft. In einem Sedimentbohrkern des Koucha-Sees (östliches Tibetplateau) konnten diese Parameter dann im Hinblick auf Änderungen der Produktivität im See sowie der hydrologischen und klimatischen Bedingungen der letzten 15000 Jahre interpretiert werden. Es zeigte sich, dass der See bis 8000 Jahre vor Heute stark mit Wasserpflanzen bewachsen war, während die letzten 6000 Jahre Algen dominierten. Mit Hilfe von Wasserstoffisotopen wurden eine Zunahme des Monsuns und steigende Niederschläge zwischen 15000 und 10000 Jahren vor Heute sowie eine relativ trockene Periode zwischen 10000 und 7000 Jahren vor Heute rekonstruiert. Durch Kombination von Biomarkerkonzentrationen sowie deren Kohlenstoffisotopensignal wurden außerdem kurzzeitige Kälteperioden um ca. 6000, 3100 und 1800 Jahren vor Heute nachgewiesen, die vorher bereits in anderen Klimaarchiven in Tibet sowie auf der nördlichen Hemisphäre belegt wurden. Mit Hilfe von organischen Biomarkern konnte so ein detailliertes Bild über die Entwicklung des Koucha-Sees seit dem letzten Glazial gewonnen werden. Organische Biomarker haben sich somit als geeignet erwiesen, einen Beitrag zur Klimarekonstruktion auf dem Tibetplateau zu leisten.
163

チベット湖沼堆積物の年代決定とモンスーン活動の復元

NISHIMURA, Mitsugu, KAKEGAWA, Takeshi, MINOURA, Koji, NAKAMURA, Toshio, MATSUNAKA, Tetsuya, NARA, Fumiko Watanabe, WATANABE, Takahiro, 西村, 弥亜, 掛川, 武, WANG, Junbo, ZHU, Liping, 箕浦, 幸治, 中村, 俊夫, 松中, 哲也, FAGEL, Nathalie, 奈良, 郁子, 渡邊, 隆広 03 1900 (has links)
名古屋大学年代測定総合研究センターシンポジウム報告
164

Holocene development and permafrost history of two mires in Tavvavuoma, Northern Sweden

Prėskienis, Vilmantas January 2013 (has links)
Two peat cores from two mires with different characteristics, but both containingpermafrost features and located in the eastern part of the Tavvavuoma mire complex innorthernmost Sweden, were analysed for macrofossils and geochemical properties. Local vegetationsequences and changes in geochemical properties of peat were used to reconstruct development ofthe studied mires during the Holocene. The study includes measurements of water/ice content, bulkdensity, loss-on-ignition and C/N ratio. Radiocarbon dates for peatland inception and permafrostaggradation are available. The main purpose of the study is to verify permafrost history in thepeatlands. The results of the macrofossil analysis and values of C/N ratio indicate nutrient poor tointermediate fen environments in both studied mires until recently. Signs of permafrost upheavalwhich caused formation of xerophilic peat can be proved only since late 1950’s. The study resultscorroborate with other studies from Northern Fennoscandia and infer peatland initiation soon afterthe deglaciation of the area and permafrost-free conditions throughout entire Holocene untilrecently.
165

Teleseismic Imaging of the Crust and Upper Mantle in the Western United States

Liu, Kaijian 06 September 2012 (has links)
High-resolution seismic images of lithospheric structures allow us to infer the tectonics that modified the lithosphere. We apply such methods to understand Cenozoic modification of the lithosphere by tectonic and magmatic processes in the tectonically active western United States. Using USArray Transportable and Flexible Array data, we present high-resolution images for three regions in this thesis. (1) In the Mendocino triple junction, we use a joint inversion of Rayleigh-wave dispersion data and receiver functions to obtain a new crust and upper Vs model to ~150km depth. The model shows four distinct, young lithosphere-asthenosphere boundary systems. A low-Vs anomaly beneath the Great Valley-Sierra Nevada reconciles existing slab window models with the mantle-wedge geochemical signatures in Coast Range volcanics, and explains the ~3 Myr delay of the onset of volcanism after slab removal. Uppermost mantle low velocities provide evidence for forearc mantle serpentinization extending along the Cascadia margin. (2) In the Colorado Plateau, a Rayleigh wave tomography model sheds light on the volcanism along the margins and plateau uplift. Strong upper mantle heterogeneity across the plateau edge results from the combined effect of a ~200-400 K temperature difference and ~1% partial melt. A ring of low velocities under the plateau periphery suggests that the rehydrated Proterozoic lithosphere is progressively removed by convective processes. Particularly, a high-Vs anomaly imaged beneath the western plateau adds evidence for a downwelling/delamination hypothesis [Levander et al., 2011]. Thermo-chemical edge-driven convection causing localized lithospheric downwelling provides uplift along the margins and magmatic encroachment into the plateau center. (3) In the final study, we developed a 3-D teleseismic scattering wave imaging technique based on the Kirchhoff approximation and 3-D inverse Generalized Radon Transform. Synthetic tests demonstrate higher resolution imaging for continuous, irregular interfaces or localized scatterers, in comparison to conventional methods. Applied to the High Lava Plains dataset, the transmission coefficient structure shows a deepening Moho near 117.6°W and three negative events that correlate well with the Rayleigh wave low-Vs zones. Images made with the Mendocino data clearly show rapidly decreasing lithosphere-asthenosphere boundary depths from the subduction to transform regime.
166

The Ten Stone Ranges Structural Complex of the central Mackenzie Mountains fold-and-thrust belt: a structural analysis with implications on the Plateau Fault and regional detachment level

MacDonald, Justin January 2009 (has links)
The Cordilleran Orogen affected majority of the western margin of ancient continental North America in the Cretaceous, which is well recorded in the Foreland Belt. The Mackenzie Mountains fold-and-thrust belt is located primarily in the westernmost Northwest Territories and easternmost Yukon Territory in northern Canada. The mountains are often described as the northern extension of the Rocky Mountains to the south which are one of the world’s best examples of a thin-skinned fold-and-thrust belt. Within the Mackenzie Mountains, Neo-Proterozoic through Cretaceous sedimentary rocks record the Laramide aged deformation, with a range of structures that vary in size and complexity. Previous mapping by the Geological Survey of Canada produced a series of reconnaissance maps that are still in use today, many of which are available in only black and white. This study is focused on a part of the 1:250 000 scale NTS 106A Mount Eduni map sheet from Geological Survey of Canada reconnaissance mapping in 1974. The study involved re-mapping a large panel at 1:50 000 scale to better understand the structural geometry, regional shortening and the depth of the underlying detachment level. Through systematic geologic mapping and structural analyses, this study presents a balanced regional cross-section, numerous serial cross-sections and a detailed geologic map of the study area, the Ten Stone Ranges Structural Complex. The serial cross-sections were used to define the geometry of the Cache Lake Fold, a large fault-bend-fold system that involves a folded thrust fault and complicated subsurface geometry. In addition to this, the sections confirmed that the TSRSC is a transfer zone whereby a series of thrust faults and décollement folds are responsible for much of the displacement and shortening in the Mount Eduni map sheet. The balanced regional cross-section was constructed across a number of key structural elements, in particular the Plateau Fault, a regional structure with a > 250 kilometer strike length and the subject of much debate as to its geometry. In addition to this structure, the cross-section transects the Cache Lake Fold and the Shattered Range Anticline, a regional box shaped anticline that was used for a “depth to detachment” calculation. By examining the regional detachment level estimated from the balanced cross-section and calculating the detachment depth using the Shattered Range Anticline the detachment depth was found to be – 11.3 kilometers below the current erosional level. This study is the first structural analyses of the Mount Eduni map sheet, particularly the Ten Stone Ranges Structural Complex, and has resulted in an estimate of the detachment depth for the area, a shortening estimate of > 7 kilometers across the 50 kilometer line of section and a displacement estimate for the Plateau Thrust of > 20 kilometers.
167

The Ten Stone Ranges Structural Complex of the central Mackenzie Mountains fold-and-thrust belt: a structural analysis with implications on the Plateau Fault and regional detachment level

MacDonald, Justin January 2009 (has links)
The Cordilleran Orogen affected majority of the western margin of ancient continental North America in the Cretaceous, which is well recorded in the Foreland Belt. The Mackenzie Mountains fold-and-thrust belt is located primarily in the westernmost Northwest Territories and easternmost Yukon Territory in northern Canada. The mountains are often described as the northern extension of the Rocky Mountains to the south which are one of the world’s best examples of a thin-skinned fold-and-thrust belt. Within the Mackenzie Mountains, Neo-Proterozoic through Cretaceous sedimentary rocks record the Laramide aged deformation, with a range of structures that vary in size and complexity. Previous mapping by the Geological Survey of Canada produced a series of reconnaissance maps that are still in use today, many of which are available in only black and white. This study is focused on a part of the 1:250 000 scale NTS 106A Mount Eduni map sheet from Geological Survey of Canada reconnaissance mapping in 1974. The study involved re-mapping a large panel at 1:50 000 scale to better understand the structural geometry, regional shortening and the depth of the underlying detachment level. Through systematic geologic mapping and structural analyses, this study presents a balanced regional cross-section, numerous serial cross-sections and a detailed geologic map of the study area, the Ten Stone Ranges Structural Complex. The serial cross-sections were used to define the geometry of the Cache Lake Fold, a large fault-bend-fold system that involves a folded thrust fault and complicated subsurface geometry. In addition to this, the sections confirmed that the TSRSC is a transfer zone whereby a series of thrust faults and décollement folds are responsible for much of the displacement and shortening in the Mount Eduni map sheet. The balanced regional cross-section was constructed across a number of key structural elements, in particular the Plateau Fault, a regional structure with a > 250 kilometer strike length and the subject of much debate as to its geometry. In addition to this structure, the cross-section transects the Cache Lake Fold and the Shattered Range Anticline, a regional box shaped anticline that was used for a “depth to detachment” calculation. By examining the regional detachment level estimated from the balanced cross-section and calculating the detachment depth using the Shattered Range Anticline the detachment depth was found to be – 11.3 kilometers below the current erosional level. This study is the first structural analyses of the Mount Eduni map sheet, particularly the Ten Stone Ranges Structural Complex, and has resulted in an estimate of the detachment depth for the area, a shortening estimate of > 7 kilometers across the 50 kilometer line of section and a displacement estimate for the Plateau Thrust of > 20 kilometers.
168

Assessing Organic Matter Breakdown and Associated Macroinvertebrate Community Structure in Headwater Streams: Effects of Hydrologic Gradients and Upland Timber Harvesting

Jarrell, Miller Scott 01 July 2009 (has links)
I examined the effects of hydrologic gradients and upland timber harvesting with different streamside management zone widths on yellow-poplar (Liriodendron tulipifera) processing and the associated macroinvertebrate community structure in the Cumberland Plateau ecophysic region, U.S.A. Prior to upland timber harvesting, 5.0 ± 0.1 g yellow-poplar leaf packs were constructed, zip-tied to gutter nails, and placed into 7 perennial and 6 temporary stream reaches with similar physiochemical and geomorphic characteristics. From December 2007 to May 2008, 3–5 leaf packs were collected per reach monthly. I found significant differences in the functional feeding group composition. Temporary reaches contained higher shredder, gathering-collector, predator, and total macroinvertebrate abundances. Shredder and total macroinvertebrate biomass was also higher in the temporary stream reaches. Gathering-collector biomass along one measurement was higher in the temporary streams. Perennial and temporary stream reaches contained similar macroinvertebrate diversity. Logging operations occurred from May 2008–December 2008. After logging operations ended, yellow-poplar leaf packs were placed into the perennial and temporary reaches of 3 control and 3 treatment streams (2 with same SMZ width, 1 different). From December 2008–May 2009. Leaf packs were collected monthly. Within the temporary and perennial stream reaches, no significant differences were detected between control and treatment yellow-poplar processing rates. No significant differences were detected between the control and treatment functional feeding group composition in abundance and biomass. Post-harvest, taxon richness increased in both the perennial control and treatment streams, while richness declined in the temporary control and increased in the temporary treatment. My findings indicate that when water is present, organic matter processing will function similarly to downstream reaches that have continual water flow. During seasonal flow patterns, macroinvertebrate communities associated with organic matter are present in temporary streams and may exceed perennial stream reaches in their density and biomass. This indicates that temporary streams are physically suitable habitats for macroinvertebrate fauna and contribute to a stream’s form and function. Overall, no observed distinct response in yellow-poplar processing rates or the associated macroinvertebrate community structure was detected within the perennial or temporary streams. Macroinvertebrate community structure varied spatially and temporally. On the taxonomic level, increases in taxa-specific abundance and biomass remain to be explained. Future research assessing interactions on the taxonomic level might help explain increases or decreases in abundance and biomass in relation to treatment effects. This study documented the response of organic matter breakdown and associated macroinvertebrate community structure during the 1st 5 months after logging. Thus, it is only a snapshot of stream ecosystem response to disturbance. Long-term studies are needed to evaluate full ecosystem response and recovery. Due to uncontrollable factors, I was not able to evaluate the success of different SMZ widths. Results documented should be treated with hesitancy, until full ecosystem response has been documented.
169

Rule-Based Model Specification with Applications to Motoneuron Dendritic Processing

Shapiro, Nicholas Pabon 05 July 2006 (has links)
With the recent discoveries of phenomena such as plateau potentials, bistability, and synaptic amplification the focus of motoneuron research has been directed to the dendritic processes giving rise to these latent behaviors. The common consensus is that the mechanism behind bistability (an L-type calcium channel generating a persistent inward current, PIC; Schwindt and Crill 1980, Hounsgaard and Kiehn 1985, 1989) is also responsible for the amplification of synaptic input in motoneurons. However, modeling studies utilizing only calcium-based PICs (Powers 1993, Booth et al. 1997, Elbasinouy et al. 2005) have been unable to reproduce the high degree of synaptic amplification observed in experimental preparations (Prather et al. 2001, Lee et al. 2003, Hultborn et al. 2003). The present work examines a theoretical amplification mechanism (electrotonic compression), based on a sodium PIC of dendritic origin, which acts to supplement the synaptic amplification due to the calcium PIC. The current goal is to test the "goodness-of-fit" of electrotonic compression with established mechanisms and behaviors. The findings of this modeling study support the concept of a dendritic sodium PIC which acts to reduce the attenuation of synaptic currents enroute to the motoneuron soma. Furthermore, it is suggested that the ratiometric expression of ion channels giving rise to this mechanism takes the form of a distribution "rule" applied ubiquitously across the dendritic tree, while the plateau-producing L-type calcium channels undergo a more discretized or regional distribution. This study demonstrates the power inherent to the controlled expansion of morphological complexity in an already complex model. While modeling studies are suitable testbeds for the evaluation of theoretical and/or experimentally intractable facets of physiology, great care and consideration should be given to the specification of models with high dimensionality. With the continual progression of our knowledge-base and computational capabilities, we can expect that more and more empirical observations will find their way into models of increasing complexity wherein the layers of embedded hypotheses are frequently implicit. It is therefore imperative that the neural modeling discipline adopt more rigorous methodologies to both accommodate and rein-in this growing complexity.
170

The impacts of high performance work system on career plateau and role performance, turnover intention: Using perception of supervisor support as moderator

Liu, Szu-ying 19 August 2012 (has links)
Talented people are the key factor for enterprises to maintain their competitive advantage. Since 1980s, due to the changes of internal and external environments, reorganization and simplification have become the patterns of organizations, which indicating promotion possibility in an organization has been relatively reduced. These generate the feeling of development limitation within employees and result in the phenomenon of career plateau. However, high performance work system is regarded as a set of management system in human resources field , and it includes most types of best management practices. Therefore, this study attempts to explore antecedents and consequences of variable of the career plateau, including a negative correlation between high performance work system and career plateau as well as the impact of the career plateau on role performance and turnover intention, and whether the perceived supervisor support will be an interference effect. In this study, pairing questionnaires are offered to executives and organizational members 47 effective matching samples are received. Hierarchical linear model is used in this study to verify the hypothesis. The results show: 1. Career plateau is negatively associated with role performance; 2. Career plateau is positively associated with the turnover intention; 3. The effect of perceived supervisor support can interfere with both career plateau and turnover intention. The findings of this study indicate: 1. Organizations should establish career planning and development for employees in order to reduce the adverse effects of career plateau; 2. Organizations should find a method to increase employees¡¦ perceived of supervisor support in order to reduce the negative effects of career plateau; 3. High performance work system is a systematic system. It should be assessed in depth regarding the way of solving the career plateau. Finally, suggestions for future research and the limitation of this study are also discussed. Keywords: career plateau, high performance work system, role performance, turnover intention, perceived supervisor support

Page generated in 0.0281 seconds