• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithmes pour les polynômes lacunaires

Leroux, Louis 24 March 2011 (has links) (PDF)
Le but de cette thèse est d'utiliser plusieurs résultats profonds de géométrie diophantienne et de géométrie algébrique pour obtenir des applications à la factorisation des polynômes lacunaires. Dans la première partie, on décrit un algorithme qui détermine une représentation des points de torsion d'une sous-variété de Gn m définie par des polynômes lacunaires. La complexité de cet algorithme est quasilinéaire en le logarithme du degré des polynômes définissant cette sous-variété. Dans la seconde partie, on s'intéresse à des systèmes surdéterminés d'équations polynomiales. On décrit un algorithme qui permet d'écrire les zéros communs de trois polynômes à deux variables comme une réunion finie d'intersections complètes en dehors d'un ouvert de A2. La complexité de cet algorithme est encore quasi-linéaire en le logarithme du degré des polynômes en entrée mais cet algorithme dépend de la validité de la conjecture de Zilber qui est encore à ce jour un problème ouvert.
2

Caractère d'isogénie et borne uniforme pour les homothéties

David, Agnès 02 December 2008 (has links) (PDF)
L'objet de cette thèse est l'obtention de résultats uniformes sur l'image des représentations galoisiennes associées aux points de torsion des courbes elliptiques possédant une isogénie de degré premier. <br /><br />Le cadre se compose d'un corps de nombres K différent de Q et galoisien sur Q, d'une courbe elliptique E définie sur K et d'un nombre premier p ; on suppose que la courbe E possède une isogénie de degré p définie sur K.<br /><br />On détermine explicitement un nombre réel C(K), ne dépendant que du corps de nombres K, tel que si p est choisi strictement supérieur à C(K), alors l'image de la représentation galoisienne associée aux points de p-torsion de E contient les homothéties qui sont des puissances douzièmes. Ce résultat complète des travaux précédents d'Eckstein sur les homothéties dans l'image des représentations galoisiennes associées aux points de torsion des courbes elliptiques.<br /><br />La méthode employée est celle de Momose pour l'étude du caractère donnant l'action du groupe de Galois absolu de K sur le sous-groupe d'isogénie d'ordre p ("caractère d'isogénie").<br />Pour p strictement plus grand que C(K), on obtient deux formes possibles précises pour ce caractère d'isogénie : soit sa puissance douzième est égale au caractère cyclotomique à la puissance 6 ; soit il lui est naturellement associé un corps quadratique imaginaire et sa puissance douzième présente des similarités avec celle d'un caractère provenant d'une courbe elliptique à multiplication complexe.
3

Formes effectives de la conjecture de Manin-Mumford et réalisations du polylogarithme abélien / Effective forms of the Manin-Mumford conjecture and realisations of the abelian polylogarithm

Scarponi, Danny 15 September 2016 (has links)
Dans cette thèse nous étudions deux problèmes dans le domaine de la géométrie arithmétique, concernant respectivement les points de torsion des variétés abéliennes et le polylogarithme motivique sur les schémas abéliens. La conjecture de Manin-Mumford (démontrée par Raynaud en 1983) affirme que si A est une variété abélienne et X est une sous-variété de A ne contenant aucune translatée d'une sous-variété abélienne de A, alors X ne contient qu'un nombre fini de points de torsion de A. En 1996, Buium présenta une forme effective de la conjecture dans le cas des courbes. Dans cette thèse, nous montrons que l'argument de Buium peut être utilisé aussi en dimension supérieure pour prouver une version quantitative de la conjecture pour une classe de sous-variétés avec fibré cotangent ample étudiée par Debarre. Nous généralisons aussi à toute dimension un résultat sur la dispersion des relèvements p-divisibles non ramifiés obtenu par Raynaud dans le cas des courbes. En 2014, Kings and Roessler ont montré que la réalisation en cohomologie de Deligne analytique de la part de degré zéro du polylogarithme motivique sur les schémas abéliens peut être reliée aux formes de torsion analytique de Bismut-Koehler du fibré de Poincaré. Dans cette thèse, nous utilisons la théorie de l'intersection arithmétique dans la version de Burgos pour raffiner ce résultat dans le cas où la base du schéma abélien est propre. / In this thesis we approach two independent problems in the field of arithmetic geometry, one regarding the torsion points of abelian varieties and the other the motivic polylogarithm on abelian schemes. The Manin-Mumford conjecture (proved by Raynaud in 1983) states that if A is an abelian variety and X is a subvariety of A not containing any translate of an abelian subvariety of A, then X can only have a finite number of points that are of finite order in A. In 1996, Buium presented an effective form of the conjecture in the case of curves. In this thesis, we show that Buium's argument can be made applicable in higher dimensions to prove a quantitative version of the conjecture for a class of subvarieties with ample cotangent studied by Debarre. Our proof also generalizes to any dimension a result on the sparsity of p-divisible unramified liftings obtained by Raynaud in the case of curves. In 2014, Kings and Roessler showed that the realisation in analytic Deligne cohomology of the degree zero part of the motivic polylogarithm on abelian schemes can be described in terms of the Bismut-Koehler higher analytic torsion form of the Poincaré bundle. In this thesis, using the arithmetic intersection theory in the sense of Burgos, we give a refinement of Kings and Roessler's result in the case in which the base of the abelian scheme is proper.

Page generated in 0.0577 seconds