• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isogeny graphs, modular polynomials, and applications / Graphes d'isogénies, polynômes modulaires et applications

Martindale, Chloe 14 June 2018 (has links)
Dans ma thèse j'etude les variétés abéliennes ordinaires définies avec multiplication réelle maximale. Je définis des polynômes modulaires dans ce situation et je donne un algorithme pour calculer sur les nombres complexes et pour les surfaces sur des corps finis. Je donne aussi un théorème de structure pour les graphs des isogénies dans ce contexte. Je donne une généralisation de Schoof-Elkies-Atkin aux courbes de genre 2 avec multiplication réelle maximale fixe en utilisant les polynômes modulaires. / My thesis looks at ordinary abelian varieties defined with maximal real multiplication. I define modular polynomials in this setting and give an algorithm to compute them over the complex numbers, and for surfaces over finite fields. I also give a structure theorem for isogeny graphs in this setting. I give a generalisation of Schoof-Elkies-Atkin to genus 2 curves with fixed maximal real multiplication using the modular polynomials.
2

Endomorphism Rings in Cryptography

Bisson, Gaetan 14 July 2011 (has links) (PDF)
La cryptographie est devenue indispensable afin de garantir la sécurité et l'intégrité des données transitant dans les réseaux de communication modernes. Ces deux dernières décennies, des cryptosystèmes très efficaces, sûr et riches en fonctionnalités ont été construits à partir de variétés abéliennes définies sur des corps finis. Cette thèse contribue à certains aspects algorithmiques des variétés abéliennes ordinaires touchant à leurs anneaux d'endomorphismes. Cette structure joue un rôle capital dans la construction de variétés abéliennes ayant de bonnes propriétés. Par exemple, les couplages ont récemment permis de créer de nombreuses primitives cryptographiques avancées ; construire des variétés abéliennes munies de couplages efficaces nécessite de choisir des anneaux d'endomorphismes convenables, et nous montrons qu'un plus grand nombre de tels anneaux peut être utilisé qu'on ne pourrait croire. Nous nous penchons aussi le problème inverse qu'est celui du calcul de l'anneau d'endomorphisme d'une variété abélienne donnée, et qui possède en outre plusieurs applications pratiques. Précédemment, les meilleures méthodes ne résolvaient ce problème qu'en temps exponentiel ; nous concevons ici plusieurs algorithmes de complexité sous-exponentielle pour le résoudre dans le cas ordinaire. Pour les courbes elliptiques, nous algorithmes sont très efficaces, ce que nous démontrons en attaquant des problèmes de grande taille, insolvables jusqu'à ce jour. De plus, nous bornons rigoureusement la complexité de notre algorithme sous l'hypothèse de Riemann étendue. En tant que sous-routine alternative, nous nous considérons aussi une généralisation du problème du sac à dos dans les groupes finis, et montrons comment il peut être résolu en utilisant peu de mémoire. Enfin, nous généralisons notre méthode aux variétés abélienne de dimension supérieure, ce qui nécessite davantage d'hypothèses heuristiques. Concrètement, nous développons une bibliothèque qui permet d'évaluer des isogénies entre variétés abéliennes ; en utilisant cet outil important dans notre algorithme, nous appliquons notre méthode généralisée à des exemples illustratifs et de tailles jusqu'à présent inatteignables.
3

Anneaux d'endomorphismes en cryptographie / Endomorphism Rings in Cryptography

Bisson, Gaëtan 14 July 2011 (has links)
La cryptographie est indispensable aux réseaux de communication modernes afin de garantir la sécurité et l'intégrité des données y transitant. Récemment, des cryptosystèmes efficaces, sûr et riches ont été construits à partir de variétés abéliennes définies sur des corps finis. Cette thèse contribue à plusieurs aspects algorithmiques de ces variétés touchant à leurs anneaux d'endomorphismes. Cette structure joue un rôle capital pour construire des variétés abéliennesmunies de bonnes propriétés, comme des couplages, et nous montrons qu'un plus grand nombre de telles variétés peut être construit qu'on ne pourrait croire. Nous considérons aussi le problème inverse qu'est celui du calcul de l'anneau d'endomorphismes d'une variété abélienne donnée. Les meilleures méthodes connues ne pouvaient précédemment résoudre ce problème qu'en temps exponentiel ; ici, nous concevons plusieurs algorithmes de complexité sous-exponentielle le résolvant dans le cas ordinaire. Pour les courbes elliptiques, nous bornons rigoureusement la complexité de nos algorithmes sous l'hypothèse de Riemann étendue et démontrons qu'ils sont extrêmement efficaces en pratique. Comme sous-routine, nous développons notamment un algorithme sans mémoire pour résoudre une généralisation du problème du sac à dos. Nous généralisons aussi notre méthode aux variétés abélienne de dimension supérieure. Concrètement, nous développons une bibliothèque qui permet d'évaluer des isogénies entre variétés abéliennes ; cet outil nous permet d'appliquer une généralisation de notre méthode à des exemples jusqu'alors incalculables. / Modern communications heavily rely on cryptography to ensure data integrity and privacy. Over the past two decades, very efficient, secure, and featureful cryptographic schemes have been built on top of abelian varieties defined overfinite fields. This thesis contributes to several computational aspects of ordinary abelian varieties related to their endomorphism ring structure. This structure plays a crucial role in the construction of abelian varieties with desirable properties, such as pairings, and we show that more such varieties can be constructed than expected. We also address the inverse problem, that of computing the endomorphism ring of a prescribed abelian variety. Prior state-of-the-art methods could only solve this problem in exponential time, and we design several algorithms of subexponential complexityfor solving it in the ordinary case. For elliptic curves, we rigorously bound the complexity of our algorithms assuming solely the extended Riemann hypothesis, and demonstrate that they are very effective in practice. As a subroutine, we design in particular a memory-less algorithm to solve a generalization of the subset sum problem. We also generalize our method to higher-dimensional abelian varieties. Practically speaking, we develop a library enabling the computation of isogenies between abelian varieties; this building block enables us to apply a generalization of our algorithm to cases that were previously not computable.
4

split jacobians and lower bounds on heights / jacobiennes décomposées et minoration de hauteurs

Djukanovic, Martin 01 November 2017 (has links)
Cette thèse concerne des propriétés des variétés jacobiennes de courbes de genre 2 qui couvrent des courbes elliptiques. Soit E une courbe plane, donnée par une équation y^2=F(x), où F(x)=x^3+a2x^2+a1x+a0 est un polynôme à coefficients rationnels, qui a trois racines distinctes. Pour des raisons historiques, une telle courbe est appelée courbe elliptique. On sait que toute courbe elliptique E peut être équipée d'une structure de groupe commutatif - on peut additionner et soustraire ses points. Un point O « à l'infini », qui est contenu dans toutes les droites verticales (droites de la forme x=c), est l'élément neutre. Cette structure de groupe est décrite par la condition que trois points P,Q,R sur E satisfont P+Q+R=O si et seulement s'ils sont alignés. Les surfaces avec une structure de groupe commutatif sont appelées abéliennes. Par exemple, un produit de deux courbes elliptiques E1xE2 est une surface abélienne, de façon évidente. Considérons maintenant une courbe plane C donnée par une équation y^2=G(x), où G(x)=x^6+b5x^5+b4x^4+b3x^3+b2x^2+b1x+b0 est un polynôme à coefficients rationnels, qui a six racines distinctes. La courbe C est appelée hyperelliptique et n'a pas de structure de groupe. Par contre, nous pouvons lui associer, d'une façon naturelle, une surface abélienne Jac(C), appelée la jacobienne de C. En plus, nous pouvons plonger C dans Jac(C). Certaines courbes hyperelliptiques sont spéciales car elles couvrent des courbes elliptiques. Par exemple, considérons une courbe C donnée par l'équation y^2=x^6+ax^4+bx^2+c, dans laquelle seulement des puissances paires de x apparaissent. Si (x,y) est un point de cette courbe alors de même (-x,y), et nous pouvons définir une application algébrique f:(x,y)->(x^2,y) de degré 2, c'est-à-dire, de fibre générale à deux points. Alors (X,Y)=(x^2,y) est un point de la courbe elliptique E donnée par Y^2=X^3+aX^2+bX+c et nous disons que C est un revêtement double de E. Si E1 est une courbe elliptique, si C est une courbe hyperelliptique, et si C->E1 est un revêtement de degré n qui n'est pas une composition de revêtements, alors nous pouvons plonger E1 dans la surface Jac(C) comme un sous-groupe. De plus, il existe une autre courbe elliptique E2 et un revêtement C->E2 de degré n, tel que la surface Jac(C) a une propriété spéciale - elle peut être obtenue comme quotient de la surface E1xE2 par un sous-groupe fini. Le chapitre 1 de cette thèse traite les aspects géométriques de cette situation. Nous cherchons à savoir quelles courbes peuvent avoir une telle relation et nous nous concentrons surtout sur les cas n=2 et n=3, qui ont déjà été analysés dans la littérature. Dans le cas général, nous obtenons quelques résultats, mais une description complète s'avère très difficile de manière explicite. Le chapitre 2 traite les aspects arithmétiques de la situation, via la théorie des fonctions hauteurs, qui sont un outil très utile pour répondre à des questions concernant des points rationnels de courbes et surfaces. Pour tout nombre rationnel x=a/b, avec a et b des entiers premiers entre eux, on définit la hauteur h(x) de x, de façon très précise, comme une mesure de sa complexité arithmétique - la hauteur dit approximativement combien de chiffres sont nécessaires pour écrire les entiers a et b. De la même façon, la hauteur d'un point rationnel d'une courbe ou surface nous dit combien de chiffres ont les coordonnées. Par exemple, (3,5) et (1749/1331,-1861/1331) sont deux points rationnels de complexités plutôt différentes de la courbe y^2=x^3-x+1, tandis que (2,√7) n'est pas un point rationnel. Il est possible d'attacher une hauteur aux courbes elliptiques et aux surfaces abéliennes qui mesure leur complexité arithmétique totale. Une relation spécifique entre ces deux notions de hauteur est alors conjecturée et nous étudions cette conjecture dans la situation décrite plus haut. Nous montrons que cette relation est vraie pour E1xE2 si et seulement si elle est vraie pour Jac(C). / This thesis deals with properties of Jacobians of genus two curves that cover elliptic curves. Let E be a curve in the plane, given by an equation y^2=F(x), where F(x)=x^3+a2x^2+a1x+a0 is a polynomial with rational coefficients and with three distinct roots. For historical reasons, such a curve is known as an elliptic curve. It is known that every elliptic curve E can be equipped with a structure of a commutative group - its points can be added and subtracted. A point O "at infinity", which is contained in all vertical lines (lines of form x=c), is the neutral element. This group structure is described by the condition that three points P,Q,R in E satisfy P+Q+R=O if and only if they are collinear. Surfaces with a commutative group structure are called abelian. For example, a product of two elliptic curves E1xE2 is an abelian surface in the obvious way. Next we consider a planar curve C given by an equation y^2=G(x), where G(x)=x^6+b5x^5+b4x^4+b3x^3+b2x^2+b1x+b0 is a polynomial with rational coefficients and six distinct roots. The curve C is called hyperelliptic and it does not have a group structure. However, we can associate to it, in a natural way, an abelian surface Jac(C), called the Jacobian of C. Moreover, we can embed C into it. Some hyperelliptic curves, of the form y^2=G(x) as above, are special because they cover elliptic curves. For example, consider a curve C given by y^2=x^6+ax^4+bx^2+c, so that only even powers of x appear. If (x,y) is a point on this curve then so is (-x,y) and we can define an algebraic map f:(x,y)->(x^2,y), that is of degree 2, i.e. 2-to-1. Now (X,Y)=(x^2,y) is a point on the elliptic curve E given by Y^2=X^3+aX^2+bX+c and we say that C is a double cover of E. If E1 is an elliptic curve, C is a hyperelliptic curve, and C->E1 is an n-to-1 covering that is not a composition of coverings, then we can embed E1 into the surface Jac(C) as a subgroup. Moreover, there exists another elliptic curveE2 and an n-to-1 covering C->E2, such that the surface Jac(C) has a special property - it can be obtained as the quotient of the surface E1xE2 by a finite subgroup. The first chapter of the thesis deals with the geometric aspects of this setup. We investigate which curves can form this special relationship and we focus mostly on the cases n=2 and n=3, which have already been analysed in literature. We also gain some insight into the general case, but a full description proves to be very difficult computationally. The second chapter deals with the arithmetic aspects of the setup, via the theory of height functions, which are a very useful tool in answering questions about rational points on curves and surfaces. For every rational number x=a/b, where a and b are coprime integers, one can define its height h(x), in a very precise way, as a measurement of its arithmetic complexity - the height roughly tells us how many digits are needed to write down the integers a and b. Likewise, the height of a rational point on a curve or surface tells us about the number of digits of the coordinates. For example, (3,5) and (1749/1331,-1861/1331) are two rational points of rather different complexity on the curve y^2=x^3-x+1, while (2,√7) is not a rational point. It is also possible to associate a height to an elliptic curve or an abelian surface and measure its arithmetic complexity as a whole. A specific relation between these two heights is conjectured and we investigate it in the context of the setup above. We show that this relation holds for E1xE2 if and only if it holds for Jac(C).
5

Caractère d'isogénie et borne uniforme pour les homothéties

David, Agnès 02 December 2008 (has links) (PDF)
L'objet de cette thèse est l'obtention de résultats uniformes sur l'image des représentations galoisiennes associées aux points de torsion des courbes elliptiques possédant une isogénie de degré premier. <br /><br />Le cadre se compose d'un corps de nombres K différent de Q et galoisien sur Q, d'une courbe elliptique E définie sur K et d'un nombre premier p ; on suppose que la courbe E possède une isogénie de degré p définie sur K.<br /><br />On détermine explicitement un nombre réel C(K), ne dépendant que du corps de nombres K, tel que si p est choisi strictement supérieur à C(K), alors l'image de la représentation galoisienne associée aux points de p-torsion de E contient les homothéties qui sont des puissances douzièmes. Ce résultat complète des travaux précédents d'Eckstein sur les homothéties dans l'image des représentations galoisiennes associées aux points de torsion des courbes elliptiques.<br /><br />La méthode employée est celle de Momose pour l'étude du caractère donnant l'action du groupe de Galois absolu de K sur le sous-groupe d'isogénie d'ordre p ("caractère d'isogénie").<br />Pour p strictement plus grand que C(K), on obtient deux formes possibles précises pour ce caractère d'isogénie : soit sa puissance douzième est égale au caractère cyclotomique à la puissance 6 ; soit il lui est naturellement associé un corps quadratique imaginaire et sa puissance douzième présente des similarités avec celle d'un caractère provenant d'une courbe elliptique à multiplication complexe.

Page generated in 0.0413 seconds