Spelling suggestions: "subject:"poly(A) tal"" "subject:"poly(A) tais""
1 |
ISOLATION AND CHARACTERIZATION OF THE FOUR ARABIDOPSIS THALIANA POLY(A) POLYMERASE GENESMeeks, Lisa Renee 01 January 2005 (has links)
Poly(A) tail addition to pre-mRNAs is a highly coordinated and essential step in mRNA maturation involving multiple cis- and trans-acting factors. The trans-acting factor, poly(A) polymerase (PAP) plays an essential role in the polyadenylation of mRNA precursors. The Arabidopsis thaliana genome contains four putative PAP genes. We have found, using in silico analysis and transgenic plants expressing GUS under the control of the four PAP promoters, that each of these genes is expressed in overlapping, yet unique patterns. This gives rise to the possibility that these genes are not redundant and may be essential for plant survival. To further test this, inducible RNAi and T-DNA mutagenized plants were obtained and analyzed. Plants lacking all, or most, of each PAP gene product, due to RNAi induction, were not viable at any of the stages of plant growth tested. Furthermore, T-DNA PCR analysis determined that no plants containing a homozygous mutation, were viable. This data reveals that lack of any of the four PAP gene products has a significant effect on the plants ability of survive, thus indicating that each PAP gene is essential. Finally, transient expression experiments with each of the full length PAP cDNAs fused to GFP showed that the PAP I, PAP II and PAP IV gene products are localized throughout the nucleus and within nuclear speckles. The cellular localization of PAP III could not be determined.
|
2 |
Human rhinoviruses : development of new reverse genetics methods dedicated to the improvement of the conservation of viral heterogeneity / Les rhinovirus humains : développement de nouvelles méthodes de génétique inversée dédiées à l'amélioration de la conservation de l'hétérogénéité viraleEl Ayoubi, Miriam Diala 17 September 2018 (has links)
Les systèmes de génétique inverse permettent de manipuler les génomes viraux et se sont révélés essentiels pour étudier les virus à ARN. Récemment, une méthode basée sur la PCR, la méthode ISA (Infectious Subgenomic Amplicons), a été développée. La première partie de cette thèse se concentre sur la simplification de la méthode ISA. La principale contrainte d'ISA est l'exigence de produire des fragments génomiques modifiés qui nécessite un promoteur de transcription à l’extrémité 5’ du premier fragment et un ribozyme du virus de l'hépatite delta, suivi du signal de polyadénylation du virus simien 40 (HDR / SV40pA) à l’extrémité 3’ du dernier fragment. Ici, nous proposons une nouvelle méthode simplifiée "Haiku", dans laquelle sont fournis ces deux séquences en tant qu'amplicons séparés. Cette technique améliorée a été appliquée avec succès à une large gamme de virus dans des cellules de moustiques et de mammifères. La deuxième partie de cette thèse est axée sur la caractérisation de la population virale issue de divers systèmes de génétique inverse en utilisant le HRV-B14 comme modèle.Nos résultats montrent que le choix de la méthode a influencé la diversité génétique des populations virales mais quelle que soit la méthode utilisée, la fitness réplicative était similaire. En outre, nos données ont révélé que le poly(A)25 est la longueur optimale pour récupérer le HRV-B14 avec une efficacité élevée. La dernière partie du présent travail a examiné le potentiel de la méthode «ISA» pour conserver le spectre mutant présent dans l'échantillon viral d'origine. Nous avons montré que cette méthode récapitule au moins partiellement les quasi-espèces de la population virale native. / Reverse genetics systems allow manipulating viral genomes and have proved to be essential for studying RNA viruses. Recently, a PCR-based method, named ISA (Infectious Subgenomic Amplicons), was developed to facilitate the study of single-stranded positive-sense RNA viruses. The first part of the present work focused on simplifying the ISA method. The main constraint of the canonic protocol of the ISA method is the requirement to produce modified genomic fragments encompassing the transcription promoter and the terminator. Here, we propose the ultimately simplified "Haiku" design in which the promoter and the terminator are provided as additional separate DNA amplicons. This improved procedure was successfully applied to the rescue of a wide range of viruses in mosquito and mammalian cells. The second part of this work assessed the viral population issued from different reverse genetics systems. Using HRV B-14 as a model, we compared the genetic diversity and the replicative fitness of viruses generated using the most commonly used reverse genetics methods. Our results showed that the choice of the method influenced the genetic diversity of viral populations but whatever the method used, the replicative fitness was similar. In addition, Our data revealed that poly(A)25 is the optimal length to recover HRV-B14 with high efficiency and could be used to recover polyadenylated RNA viruses other than HRV-B14. The last part of the present work investigated the potential of the “ISA” method to conserve the mutant spectrum present in the original viral sample. We have showed that this method recapitulate at least partially the quasispecies of the native viral population.
|
3 |
Coevolution of plastid genomes and transcript processing pathways in photosynthetic alveolatesDorrell, Richard G. January 2014 (has links)
Following their endosymbiotic uptake, plastids undergo profound changes to genome content and to their associated biochemistry. I have investigated how evolutionary transitions in plastid genomes may impact on biochemical pathways associated with plastid gene expression, focusing on the highly unusual plastids found in one group of eukaryotes, the alveolates. The principal photosynthetic alveolate lineage is the dinoflagellate algae. Most dinoflagellate species harbour unusual plastids derived from red algae. The genome of this plastid has been fragmented into small, plasmid-like elements termed “minicircles”. Transcripts of this genome receive a 3’ poly(U) tail and, in some species, undergo extensive sequence editing. Some dinoflagellates have replaced their original plastids with others, in a process termed “serial endosymbiosis”. The major non-photosynthetic alveolates are the apicomplexans, which include the malaria parasite Plasmodium. Apicomplexans are descended from free-living algae and possess a vestigial plastid, which originated through the same endosymbiosis as the ancestral red dinoflagellate plastid. This plastid has lost all genes involved in photosynthesis and does not possess a poly(U) tail addition pathway. I have investigated the consequences of the fragmentation of the red algal dinoflagellate plastid genome on plastid transcription. I have characterised non-coding transcripts in plastids of the dinoflagellate Amphidinium carterae, including the first evidence for antisense transcripts in an algal plastid. Antisense transcripts in dinoflagellate plastids do not receive poly(U) tails, suggesting that poly(U) tail addition may play a role in strand discrimination during transcript processing. I have additionally characterised transcript processing in dinoflagellate plastids that were acquired through serial endosymbiosis. I have shown that poly(U) tail addition and editing occur in the haptophyte-derived serial endosymbionts of the fucoxanthin-containing dinoflagellates Karenia mikimotoi and Karlodinium veneficum. This is the first evidence that plastids acquired through serial endosymbiosis may be supported by pathways retained from previous symbioses. Transcript editing constrains the phenotypic consequences of divergent mutations in fucoxanthin plastid genomes, whereas poly(U) tail addition plays a central role in recognising and processing translationally functional fucoxanthin plastid mRNAs. I have additionally shown that certain genes within fucoxanthin plastids are located on minicircles. This demonstrates convergent evolution in the organisation of the fucoxanthin and red algal dinoflagellate plastid genomes since their endosymbiotic acquisition. Finally, I have investigated transcript processing in the algae Chromera velia and Vitrella brassicaformis. These species are closely related to apicomplexans but are still photosynthetic and apply poly(U) tails to plastid transcripts, as with dinoflagellates. I have shown that poly(U) tails in these species are preferentially associated with translationally functional mRNAs of photosynthesis genes. This is the first plastid transcript processing pathway documented to target a specific functional gene category. Poly(U) tail addition may direct transcript cleavage and allow photosynthesis gene transcripts to accumulate to high levels. The loss of this pathway from ancestors of apicomplexans may have contributed to their transition from photosynthesis to parasitism.
|
4 |
NEWLY SYNTHESIZED mRNA ESCAPES TRANSLATIONAL REPRESSION DURING THE ACUTE PHASE OF THE MAMMALIAN UNFOLDED PROTEIN RESPONSEAlzahrani, Mohammed Rubayyi 27 January 2023 (has links)
No description available.
|
5 |
Drosophila UNR: a factor involved in the translational regulation of dosage compensationAbaza, Irina 03 November 2006 (has links)
Dosage compensation is a mechanism that equalizes the expression of X-linked genes in those organisms in which males and females differ in the number of X chromosomes. In Drosophila melanogaster, dosage compensation is achieved by up-regulating the transcription of the single male X chromosome. This effect is mediated by a chromatin remodeling complex known as the Male Specific Lethal (MSL) complex or Dosage Compensation Complex (DCC). In female flies, dosage compensation is inhibited primarily because of the translational repression of the mRNA encoding one of the DCC subunits, MSL-2, by the female-specific RNA binding protein Sex-lethal (SXL). To inhibit translation, SXL binds to poly(U) stretches present in both the 5’ and 3’ UTRs of msl-2 mRNA. Sequences adjacent to those SXL-binding sites in the 3´UTR are also required for translation inhibition and are bound by co-repression.
In this thesis work, we have designed an affinity chromatography assay to isolate the putative co-repressor(s), and have identified the protein Upstream of N-ras (UNR). Drosophila UNR (dUNR) is an ubiquitous, conserved protein that contains 5 cold shock domains (CSD) and a glutamine- (Q) rich amino- terminal extension. We show that dUNR is a necessary co-factor for SXL-mediated msl-2 repression. SXL recruits dUNR to the 3’ UTR of msl-2 mRNA, imparting a sex-specific function to this ubiquitous protein. Domain mapping experiments indicate that dUNR interacts with SXL and msl-2 mRNA through CSD1, and that the domains for translation inhibition and SXL interaction can be distinguished. Our data indicate that the Q-rich domain, together with CSDs 1 and 2, plays an important role in translational repression, and suggest that factors in addition to dUNR and SXL are required for repression of msl-2 mRNA. Using a combination of UNR immunoprecipitation and microarray analysis, we have identified the mRNAs that are bound to dUNR in male and female flies. Our results suggest that dUNR is not only a novel regulator of dosage compensation, but also a general post-transcriptional regulator of gene expression.
|
6 |
Poly(A) Tail Regulation in the NucleusAlles, Jonathan 19 May 2022 (has links)
Der Ribonukleinsäure (RNS) Stoffwechsel umfasst verschiedene Schritte, beginnend mit der Transkription der RNS über die Translation bis zum RNA Abbau. Poly(A) Schwänze befinden sich am Ende der meisten der Boten-RNS, schützen die RNA vor Abbau und stimulieren Translation. Die Deadenylierung von Poly(A) Schwänzen limitiert den Abbau von RNS. Bisher wurde RNS Abbau meist im Kontext von cytoplasmatischen Prozessen untersucht, ob und wie RNS Deadenylierung und Abbau in Nukleus erfolgen ist bisher unklar.
Es wurde daher eine neue Methode zur genomweiten Bestimmung von Poly(A) Schwanzlänge entwickelt, welche FLAM-Seq genannt wurde. FLAM-Seq wurde verwendet um Zelllinien, Organoide und C. elegans RNS zu analysieren und es wurde eine signifikante Korrelation zwischen 3’-UTR und Poly(A) Länge gefunden, sowie für viele Gene ein Zusammenhang von alternativen 3‘-UTR Isoformen und Poly(A) Länge.
Die Untersuchung von Poly(A) Schwänzen von nicht-gespleißten RNS Molekülen zeige, dass deren Poly(A) Schwänze eine Länge von mehr als 200 nt hatten. Die Analyse wurde durch eine Inhibition des Spleiß-Prozesses validiert. Die Verwendung von Methoden zur Markierung von RNS, welche die zeitliche Auflösung der RNS Prozessierung ermöglicht, deutete auf eine Deadenylierung der Poly(A) Schwänze schon wenige Minuten nach deren Synthesis hin. Die Analyse von subzellulären Fraktionen zeigte, dass diese initiale Deadenylierung ein Prozess im Nukleus ist. Dieser Prozess ist gen-spezifisch und Poly(A) Schwänze von bestimmten Typen von Transkripten, wie nuklearen langen nicht-kodierende RNS Molekülen waren nicht deadenyliert.
Um Enzyme zu identifizieren, welche die Deadenylierung im Zellkern katalysieren, wurden verschiedene Methoden wie RNS-abbauende Cas Systeme, siRNAs oder shRNA Zelllinien verwendet. Trotz einer effizienten Reduktion der RNS Expression entsprechender Enzymkomplexe konnten keine molekularen Phänotypen identifiziert werden welche die Poly(A) Länge im Zellkern beeinflussen. / The RNA metabolism involves different steps from transcription to translation and decay of messenger RNAs (mRNAs). Most mRNAs have a poly(A) tail attached to their 3’-end, which protects them from degradation and stimulates translation. Removal of the poly(A) tail is the rate-limiting step in RNA decay controlling stability and translation. It is yet unclear if and to what extent RNA deadenylation occurs in the mammalian nucleus.
A novel method for genome-wide determination of poly(A) tail length, termed FLAM-Seq, was developed to overcome current challenges in sequencing mRNAs, enabling genome-wide analysis of complete RNAs, including their poly(A) tail sequence. FLAM-Seq analysis of different model systems uncovered a strong correlation between poly(A) tail and 3’-UTR length or alternative polyadenylation. Cytosine nucleotides were further significantly enriched in poly(A) tails. Analyzing poly(A) tails of unspliced RNAs from FLAM-Seq data revealed the genome-wide synthesis of poly(A) tails with a length of more than 200 nt. This could be validated by splicing inhibition experiments which uncovered potential links between the completion of splicing and poly(A) tail shortening. Measuring RNA deadenylation kinetics using metabolic labeling experiments hinted at a rapid shortening of tails within minutes. The analysis of subcellular fractions obtained from HeLa cells and a mouse brain showed that initial deadenylation is a nuclear process. Nuclear deadenylation is gene specific and poly(A) tails of lncRNAs retained in the nucleus were not shortened. To identify enzymes responsible for nuclear deadenylation, RNA targeting Cas-systems, siRNAs and shRNA cell lines were used to different deadenylase complexes. Despite efficient mRNA knockdown, subcellular analysis of poly(A) tail length by did not yield molecular phenotypes of changing nuclear poly(A) tail length.
|
7 |
Analýza regulace komplexů cytoplazmatických poly(A) polymeráz / Analýza regulace komplexů cytoplazmatických poly(A) polymerázNovák, Jakub January 2011 (has links)
The regulation of gene expression is achieved at many levels. Chromatin-based gene regulation has been the central focus of many decades of research; however, posttranscriptional control mechanisms are emerging as a fundamental complement to direct protein synthesis. This thesis is focused on a specific mechanism of posttranscriptional control - the translational regulation of mRNAs in the cell cytoplasm. This control is a consequence of the balance between translational repression and activation and hinges on the selective recognition of regulated mRNAs by RNA-binding proteins and their ability to recruit RNA modifying proteins. In this thesis, Caenorhabditis elegans germline was used to study translational control of the germ cell-enriched gene, gld-2. Mutants of known RNA-binding proteins of the PUF and CPB protein families were analyzed by performing Western blots, using anti-GLD-2 antibodies. Yeast 3-Hybrid system was used to identify the cis-regulatory sites in the gld-2 mRNA conferring translational regulation by members of PUF and CPB protein families. Potential autoregulatory loop of gld-2 gene expression was also investigated. This thesis shows that FBF proteins positively regulate expression of gld-2 and bind to a conserved sequence in the 3'UTR of its mRNA. Mutations of gld-2 negatively affect...
|
8 |
Spindle-Localized CPE-Mediated Translation Controls Mediotic Chromosome SegregationEliscovich, Carolina 11 June 2008 (has links)
La progresión meiótica y el desarrollo embrionario temprano están programados, en parte, por la activación tradcuccional de mRNAs maternos como lo son los que codifican para las proteinas de ciclina B1 o mos. Estos mRNAs no son traducidos al mismo tiempo ni en el mismo lugar. Por lo contrario, su traducción está especificamente regulada por elementos de poliadenilación citoplasmática (CPEs) presentes en sus 3'UTRs. Los elementos CPEs reclutan a la proteina de unión a CPE (CPE-binding protein CPEB (Colegrove-Otero et al., 2005; de Moor et al., 2005; Mendez and Richter, 2001; Richter, 2007)). Esta proteina de unión al RNA no sólo determina cuándo y en qué medida un mRNA será activado traduccionalmente por poliadenilación citoplasmática (Mendez et al., 2000a; Mendez et al., 2000b; Mendez et al., 2002) sino que también participa, junto con el represor de la traducción Maskin, en el transporte y la localización de sus mRNAs diana hacia los sitios de localización subcelular donde su traducción ocurrirá (Huang et al., 2003; Huang and Richter, 2004). Durante el desarrollo embrionario de Xenopus, CPEB se encuentra localizada en el polo animal de los oocitos y más tarde, sobre el huso mitótico y centrosomas en el embrión (Groisman et al., 2000). Se ha demostrado que embriones de Xenopus inyectados con agentes que interrumpen la traducción dependiente de poliadenilación citoplasmática, detienen la división celular y presentan estructuras mitóticas anormales (Groisman et al., 2000). En este trabajo que derivó en mi tesis doctoral, hemos demostrado que la activación traduccional localizada en el huso mitótico de mRNAs regulados por CPEB que codifican para proteinas con una conocida función en aspectos estructurales del ciclo celular como la formación del huso mitótico y la segregación cromosómica, es esencial para completar la primera división meiótica y para la correcta segregación cromosómica en oocitos de Xenopus.
|
Page generated in 0.1065 seconds