• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanistic studies of the metal catalyzed formation of polycarbonates and their thermoplastic elastomers

Choi, Wonsook 15 May 2009 (has links)
Studies concerning the formation of industrially useful polycarbonates are the focus of this dissertation. Of particular importance is the biodegradable polymer, poly(trimethylene carbonate) which has a wide range of medical applications. The production of polycarbonates can be achieved by the ring-opening polymerization of cyclic carbonate, or the copolymerization of carbon dioxide and oxiranes or oxetanes. For the production of polycarbonates from these monomers, Schiff base metal complexes have been designed, synthesized, and optimized as catalysts. Detailed kinetic and mechanistic studies have been performed for the ring-opening polymerization of cyclic carbonates, as well as the copolymerization of carbon dioxide and oxiranes or oxetane. In addition, the copolymerization of cyclic carbonates and cyclic esters to modify the mechanical and biodegradable properties of materials used for medical devices has been studied using biocompatible metal complexes. In the process for ring-opening polymerizations of trimethylene carbonate or lactides, Schiff base metal complexes (metal = Ca(II), Mg(II) and Zn(II)) have been shown to be very effective catalysts to produce high molecular weight polymers with narrow polydispersities. Kinetic studies demonstrated the polymerization reactions to proceed via a mechanism first order in [monomer], [catalyst], and [cocatalyst] if an external cocatalyst is applied, and to involve ring-opening by way of acyl-oxygen bond cleavage. The activation parameters (ΔH≠, ΔS≠ and ΔG≠) were determined for ringopening polymerization of trimethylene carbonate, ring-opening polymerization of lactides, and copolymerization of trimethylene carbonate and lactide. In the process for copolymerization of carbon dioxide and oxetane, metal salen derivatives of Cr(III) and Al(III) along with cocatalyst such as n-Bu4NX or PPNX (PPN = bis(triphenylphosphine)iminium, and X = Br, Cl and N3) have been shown to be effective catalysts to provide poly(trimethylene carbonate) with only trace amount of ether linkages. The formation of copolymer is proposed not to proceed via the intermediacy of trimethylene carbonate, which was observed as a minor product of the coupling reaction. To support this conclusion, ring-opening polymerization of trimethylene carbonate has been performed and kinetic parameters have been compared with those from the copolymerization of carbon dioxide and oxetane.
2

Characterisation of Poly(trimethylene carbonate) and f-BTI2g-TVTCN blends for the use in Biosensors / Karakterisering av poly(trimetylenkarbonat) och f-BTI2g-TVTCN blandningar för användning inom biosensorer

El Ghamri, Sara, Kammeby, Ed, Göransson, Herman, Stjerngren, Arvid January 2023 (has links)
This report aims to study the degradation of poly(trimethylene carbonate) (PTMC) caused by the enzyme carboxylesterase in vitro. As well as to characterise polymer blends of f-BTI2g-TVTCN and poly(3-hydroxybutyric acid) as core components for organic electrochemical transistors (OETCs). This is to assess the suitability of these polymers in biodegradable biosensors. The degradation study of PTMC showed a lack of degradation in contrast to previous studies performed on the material; previous studies recorded a mass loss of between (5-8)% after two months. The cause for this discrepancy is still unknown but the evidence points to both systematic faults in the gravimetric analysis as well as random errors found in the equipment. The OECT showed that increasing the PHB fraction in the polymer blend resulted in a higher output. The most stable device consisted of a 1:6 blend of f-BTI2g-TVTCN to PHB. Fewer tests were conducted on the 1:10 blend because two devices were damaged during the experiment. The statistical impact of the smaller sample size cannot be overstated so further testing should be conducted to verify the results.
3

Desenvolvimento de um substituto nanoestruturado a ser utilizado em associação com células-tronco para a terapia vascular em doença arterial periférica

Braghirolli, Daikelly Iglesias January 2017 (has links)
Atualmente, existe uma grande necessidade médica por enxertos vasculares de pequeno calibre (< 6 mm), que possam ser utilizados em cirurgias de reconstrução vascular. Nesse trabalho, dois tipos de biomateriais vasculares foram desenvolvidos pela técnica de electrospinning: biomateriais de policaprolactona (PCL) e biomateriais de poli(carbonato de trimetileno – co – ácido lático) (PTMCLLA). Os biomateriais de PCL foram funcionalizados com heparina e com VEGF (PCL/Hep/VEGF). Os biomateriais de PTMCLLA foram desenvolvidos a partir de três razões de carbonato de trimetileno/ ácido lático: 20/80, 30/70 e 40/60. Os biomateriais de PCL apresentaram taxa de degradação lenta e alta elasticidade. A funcionalização dos biomateriais preveniu a coagulação do sangue e também favoreceu o crescimento de células-tronco mesenquimais (CTMs) e de células progenitoras endoteliais (CPEs) nessas estruturas. A análise de PCR demonstrou que o VEGF adsorvido aos biomateriais não foi suficiente para diferenciar as CTMs em células endoteliais. O cultivo das CPEs sobre os biomateriais aumentou a expressão de VE-caderina e a presença de VEGF nas estruturas manteve o nível de expressão de CD31 e CD34 nessas células. Após essas análises, os biomateriais de PCL/Hep/VEGF foram fabricados em formato tubular. As CPEs foram semeadas no lúmen do biomaterial, através de biorreatores de parede rotatória (BPR), e mantidas em cultivo, por biorreatores de perfusão (BP). O BPR favoreceu a distribuição homogênea das CPEs na parede luminal dos biomateriais enquanto que o BP estimulou seu crescimento e otimizou seu metabolismo energético. Os biomateriais produzidos a partir dos copolímeros de PTMCLLA 30/70 e 40/60 exibiram uma alta flexibilidade. Porém, os biomateriais de PTMCLLA 40/60 tiveram um grande enrugamento. Os biomateriais de PTMCLLA 30/70 suportaram a adesão e o crescimento de CTMs, de CPEs e de células musculares lisas. Os resultados obtidos no presente estudo demonstram que biomateriais de PCL/Hep/VEGF apresentam características físico-químicas compatíveis para o uso vascular. Ainda, previnem a formação de trombos em sua superfície e propiciam o desenvolvimento da camada endotelial em seu lúmen. Os biomateriais de PTMCLLA 30/70 exibem alta flexibilidade e suportam o desenvolvimento de células vasculares e de células-tronco mesenquimais. De acordo com esses resultados, é possível concluir que biomateriais de PCL/Hep/VEGF e de PTMCLLA 30/70 são candidatos promissores para aplicação como enxertos vasculares. / Currently, there is a great medical need for small caliber vascular grafts (<6 mm), which can be used in vascular replacement surgeries. In this work, two types of vascular biomaterials were developed by the electrospinning technique: biomaterials of polycaprolactone (PCL) and biomaterials of poly(trimethylene carbonate-co-L-lactide) (PTMCLLA). PCL biomaterials were functionalized with heparin and VEGF (PCL / Hep/VEGF). The PTMCLLA biomaterials were developed from three ratios of trimethylene carbonate/lactide: 20/80, 30/70 and 40/60. The PCL biomaterials presented a slow degradation rate and high elasticity. The functionalization of the biomaterials prevented the blood from clotting and also favored the growth of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in these structures. PCR analysis demonstrated that VEGF adsorbed by the biomaterials was not sufficient to differentiate the MSCs into endothelial cells. The cultivation of CPEs on the biomaterials increased their expression of VE-cadherin and the presence of VEGF in the structures maintained the cell expression of CD34 and CD31. After these analyzes, the PCL/Hep/VEGF biomaterials were produced in a tubular geometrical form. The CPEs were seeded into their lumen by rotating bioreactors (RB) and maintained in culture by perfusion bioreactors (PB). The RB favored the homogeneous distribution of the CPEs in the luminal wall of the biomaterials while the BP stimulated their growth and optimized their energetic metabolism. The biomaterials produced from the PTMCLLA 30/70 and 40/60 copolymers exhibited high flexibility. However, the PTMCLLA 40/60 biomaterials exhibited substantial wrinkling. The PTMCLLA 30/70 biomaterials supported the adhesion and growth of MSCs, CPEs and smooth muscle cells. This study has demonstrated that PCL/Hep/VEGF biomaterials have physicochemical characteristics compatible with vascular use. Furthermore, they prevent thrombus formation on their surfaces and promote the development of the endothelial layer in their lumen. Biomaterials of PTMCLLA 30/70 exhibit high flexibility and support the development of vascular and mesenchymal stem cells. According to these results, it can be concluded that PCL/Hep/VEGF and PTMCLLA 30/70 biomaterials are promising candidates for use as vascular grafts.
4

Desenvolvimento de um substituto nanoestruturado a ser utilizado em associação com células-tronco para a terapia vascular em doença arterial periférica

Braghirolli, Daikelly Iglesias January 2017 (has links)
Atualmente, existe uma grande necessidade médica por enxertos vasculares de pequeno calibre (< 6 mm), que possam ser utilizados em cirurgias de reconstrução vascular. Nesse trabalho, dois tipos de biomateriais vasculares foram desenvolvidos pela técnica de electrospinning: biomateriais de policaprolactona (PCL) e biomateriais de poli(carbonato de trimetileno – co – ácido lático) (PTMCLLA). Os biomateriais de PCL foram funcionalizados com heparina e com VEGF (PCL/Hep/VEGF). Os biomateriais de PTMCLLA foram desenvolvidos a partir de três razões de carbonato de trimetileno/ ácido lático: 20/80, 30/70 e 40/60. Os biomateriais de PCL apresentaram taxa de degradação lenta e alta elasticidade. A funcionalização dos biomateriais preveniu a coagulação do sangue e também favoreceu o crescimento de células-tronco mesenquimais (CTMs) e de células progenitoras endoteliais (CPEs) nessas estruturas. A análise de PCR demonstrou que o VEGF adsorvido aos biomateriais não foi suficiente para diferenciar as CTMs em células endoteliais. O cultivo das CPEs sobre os biomateriais aumentou a expressão de VE-caderina e a presença de VEGF nas estruturas manteve o nível de expressão de CD31 e CD34 nessas células. Após essas análises, os biomateriais de PCL/Hep/VEGF foram fabricados em formato tubular. As CPEs foram semeadas no lúmen do biomaterial, através de biorreatores de parede rotatória (BPR), e mantidas em cultivo, por biorreatores de perfusão (BP). O BPR favoreceu a distribuição homogênea das CPEs na parede luminal dos biomateriais enquanto que o BP estimulou seu crescimento e otimizou seu metabolismo energético. Os biomateriais produzidos a partir dos copolímeros de PTMCLLA 30/70 e 40/60 exibiram uma alta flexibilidade. Porém, os biomateriais de PTMCLLA 40/60 tiveram um grande enrugamento. Os biomateriais de PTMCLLA 30/70 suportaram a adesão e o crescimento de CTMs, de CPEs e de células musculares lisas. Os resultados obtidos no presente estudo demonstram que biomateriais de PCL/Hep/VEGF apresentam características físico-químicas compatíveis para o uso vascular. Ainda, previnem a formação de trombos em sua superfície e propiciam o desenvolvimento da camada endotelial em seu lúmen. Os biomateriais de PTMCLLA 30/70 exibem alta flexibilidade e suportam o desenvolvimento de células vasculares e de células-tronco mesenquimais. De acordo com esses resultados, é possível concluir que biomateriais de PCL/Hep/VEGF e de PTMCLLA 30/70 são candidatos promissores para aplicação como enxertos vasculares. / Currently, there is a great medical need for small caliber vascular grafts (<6 mm), which can be used in vascular replacement surgeries. In this work, two types of vascular biomaterials were developed by the electrospinning technique: biomaterials of polycaprolactone (PCL) and biomaterials of poly(trimethylene carbonate-co-L-lactide) (PTMCLLA). PCL biomaterials were functionalized with heparin and VEGF (PCL / Hep/VEGF). The PTMCLLA biomaterials were developed from three ratios of trimethylene carbonate/lactide: 20/80, 30/70 and 40/60. The PCL biomaterials presented a slow degradation rate and high elasticity. The functionalization of the biomaterials prevented the blood from clotting and also favored the growth of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in these structures. PCR analysis demonstrated that VEGF adsorbed by the biomaterials was not sufficient to differentiate the MSCs into endothelial cells. The cultivation of CPEs on the biomaterials increased their expression of VE-cadherin and the presence of VEGF in the structures maintained the cell expression of CD34 and CD31. After these analyzes, the PCL/Hep/VEGF biomaterials were produced in a tubular geometrical form. The CPEs were seeded into their lumen by rotating bioreactors (RB) and maintained in culture by perfusion bioreactors (PB). The RB favored the homogeneous distribution of the CPEs in the luminal wall of the biomaterials while the BP stimulated their growth and optimized their energetic metabolism. The biomaterials produced from the PTMCLLA 30/70 and 40/60 copolymers exhibited high flexibility. However, the PTMCLLA 40/60 biomaterials exhibited substantial wrinkling. The PTMCLLA 30/70 biomaterials supported the adhesion and growth of MSCs, CPEs and smooth muscle cells. This study has demonstrated that PCL/Hep/VEGF biomaterials have physicochemical characteristics compatible with vascular use. Furthermore, they prevent thrombus formation on their surfaces and promote the development of the endothelial layer in their lumen. Biomaterials of PTMCLLA 30/70 exhibit high flexibility and support the development of vascular and mesenchymal stem cells. According to these results, it can be concluded that PCL/Hep/VEGF and PTMCLLA 30/70 biomaterials are promising candidates for use as vascular grafts.
5

Desenvolvimento de um substituto nanoestruturado a ser utilizado em associação com células-tronco para a terapia vascular em doença arterial periférica

Braghirolli, Daikelly Iglesias January 2017 (has links)
Atualmente, existe uma grande necessidade médica por enxertos vasculares de pequeno calibre (< 6 mm), que possam ser utilizados em cirurgias de reconstrução vascular. Nesse trabalho, dois tipos de biomateriais vasculares foram desenvolvidos pela técnica de electrospinning: biomateriais de policaprolactona (PCL) e biomateriais de poli(carbonato de trimetileno – co – ácido lático) (PTMCLLA). Os biomateriais de PCL foram funcionalizados com heparina e com VEGF (PCL/Hep/VEGF). Os biomateriais de PTMCLLA foram desenvolvidos a partir de três razões de carbonato de trimetileno/ ácido lático: 20/80, 30/70 e 40/60. Os biomateriais de PCL apresentaram taxa de degradação lenta e alta elasticidade. A funcionalização dos biomateriais preveniu a coagulação do sangue e também favoreceu o crescimento de células-tronco mesenquimais (CTMs) e de células progenitoras endoteliais (CPEs) nessas estruturas. A análise de PCR demonstrou que o VEGF adsorvido aos biomateriais não foi suficiente para diferenciar as CTMs em células endoteliais. O cultivo das CPEs sobre os biomateriais aumentou a expressão de VE-caderina e a presença de VEGF nas estruturas manteve o nível de expressão de CD31 e CD34 nessas células. Após essas análises, os biomateriais de PCL/Hep/VEGF foram fabricados em formato tubular. As CPEs foram semeadas no lúmen do biomaterial, através de biorreatores de parede rotatória (BPR), e mantidas em cultivo, por biorreatores de perfusão (BP). O BPR favoreceu a distribuição homogênea das CPEs na parede luminal dos biomateriais enquanto que o BP estimulou seu crescimento e otimizou seu metabolismo energético. Os biomateriais produzidos a partir dos copolímeros de PTMCLLA 30/70 e 40/60 exibiram uma alta flexibilidade. Porém, os biomateriais de PTMCLLA 40/60 tiveram um grande enrugamento. Os biomateriais de PTMCLLA 30/70 suportaram a adesão e o crescimento de CTMs, de CPEs e de células musculares lisas. Os resultados obtidos no presente estudo demonstram que biomateriais de PCL/Hep/VEGF apresentam características físico-químicas compatíveis para o uso vascular. Ainda, previnem a formação de trombos em sua superfície e propiciam o desenvolvimento da camada endotelial em seu lúmen. Os biomateriais de PTMCLLA 30/70 exibem alta flexibilidade e suportam o desenvolvimento de células vasculares e de células-tronco mesenquimais. De acordo com esses resultados, é possível concluir que biomateriais de PCL/Hep/VEGF e de PTMCLLA 30/70 são candidatos promissores para aplicação como enxertos vasculares. / Currently, there is a great medical need for small caliber vascular grafts (<6 mm), which can be used in vascular replacement surgeries. In this work, two types of vascular biomaterials were developed by the electrospinning technique: biomaterials of polycaprolactone (PCL) and biomaterials of poly(trimethylene carbonate-co-L-lactide) (PTMCLLA). PCL biomaterials were functionalized with heparin and VEGF (PCL / Hep/VEGF). The PTMCLLA biomaterials were developed from three ratios of trimethylene carbonate/lactide: 20/80, 30/70 and 40/60. The PCL biomaterials presented a slow degradation rate and high elasticity. The functionalization of the biomaterials prevented the blood from clotting and also favored the growth of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in these structures. PCR analysis demonstrated that VEGF adsorbed by the biomaterials was not sufficient to differentiate the MSCs into endothelial cells. The cultivation of CPEs on the biomaterials increased their expression of VE-cadherin and the presence of VEGF in the structures maintained the cell expression of CD34 and CD31. After these analyzes, the PCL/Hep/VEGF biomaterials were produced in a tubular geometrical form. The CPEs were seeded into their lumen by rotating bioreactors (RB) and maintained in culture by perfusion bioreactors (PB). The RB favored the homogeneous distribution of the CPEs in the luminal wall of the biomaterials while the BP stimulated their growth and optimized their energetic metabolism. The biomaterials produced from the PTMCLLA 30/70 and 40/60 copolymers exhibited high flexibility. However, the PTMCLLA 40/60 biomaterials exhibited substantial wrinkling. The PTMCLLA 30/70 biomaterials supported the adhesion and growth of MSCs, CPEs and smooth muscle cells. This study has demonstrated that PCL/Hep/VEGF biomaterials have physicochemical characteristics compatible with vascular use. Furthermore, they prevent thrombus formation on their surfaces and promote the development of the endothelial layer in their lumen. Biomaterials of PTMCLLA 30/70 exhibit high flexibility and support the development of vascular and mesenchymal stem cells. According to these results, it can be concluded that PCL/Hep/VEGF and PTMCLLA 30/70 biomaterials are promising candidates for use as vascular grafts.
6

New poly(hydroxyalkanoate)-based copolymers : from synthesis to tunable self-assembled systems / Copolymères originaux dérivés de poly(hydroxyalkanoate)s : Synthèse et formulation de systèmes auto-assemblés modulables

Barouti, Ghislaine 27 September 2016 (has links)
Les copolymères à blocs amphiphiles s’auto-assemblent en solution aqueuse grâce à l’association de leurs segments hydrophobes. Les nanoparticules formées à partir de copolymères biocompatibles et biodégradables tels que les poly(hydroxyalkanoates) (PHAs) sont particulièrement attractives pour la conception de systèmes à libération prolongée de principes actifs. La relation entre la composition/structure chimique du copolymère, ses propriétés d’auto-assemblage et ses effets sur les cellules in-vitro doit être étudiée. Des copolymères à blocs poly(acide malique)-b-poly(3-hydroxybutyrate) (PMLA-b-PHB), PMLA-b-PHB-b-PMLA et poly(triméthylène carbonate)-b-poly(acide-malique) (PTMC-b-PMLA) ont été synthétisés par polymérisation par ouverture cycle (ROP) des monomères correspondants, suivie d’une hydrogénolyse. Une gamme de copolymères bien définis, caractérisés par spectroscopie RMN 1H, 13C{1H}, HSQC, HMBC, et DOSY, par analyses SEC, DSC, TGA, et mesure des angles de contact, présentant des balances hydrophile/hydrophobe modulables, a été obtenue grâce au control précis de la fraction hydrophile f (11-82%). Des auto-assemblages modulables ont été formés par nanoprécipitation des copolymères en l’absence d’agent tensio-actif. De larges agrégats ainsi que des micelles cœur-couronne (Rh = 16-335 nm) ont été obtenus en fonction du copolymère utilisé (dibloc vs. tribloc). Des micelles stables pendant 10 jours à 37 °C en solution aqueuse ont été obtenues pour les copolymères avec f allant jusqu’à 50%. Les copolymères PMLA-b-PHB et PTMC-b-PMLA n’ont pas révélé de toxicité aigüe in-vitro. De plus, l’utilisation du PHB a avantageusement permis de diminuer la captation des nano-objets par les macrophages et d’augmenter la captation par les cellules hépatiques. / Amphiphilic block copolymers are able to form self-assembled systems in aqueous solution by association of their hydrophobic segments. Nanoparticles formed from biodegradable and biocompatible polymers such as poly(hydroxyalkanoate) copolymers are particularly attractive for drug delivery applications. The relationship between the chemical structure/composition of the macromolecule, its self-assembly properties and its effect on cells in-vitro has to be studied.The synthesis of poly(-malic acid)-b-poly(3-hydroxybutyrate) (PMLA-b-PHB), PMLA-b-PHB-b-PMLA, and poly(trimethylene carbonate)-b-poly(-malic acid) (PTMC-b-PMLA) was established through the ring-opening polymerization (ROP) of the corresponding monomers followed by hydrogenolysis. A range of well-defined copolymers characterized by 1H, 13C{1H}, HSQC, HMBC, DOSY NMR spectroscopy, SEC, DSC, TGA, contact angle analyses, with tunable hydrophilic/hydrophobic balance were thus obtained through the precise control of the hydrophilic weight fraction f (11-82%). Tunable self-assembled systems were obtained by nanoprecipitation of the amphiphilic PHA-based copolymers without the use of a surfactant. Large aggregates and core-shell micelles (Rh = 16-335nm) were obtained depending on the polymer topology. PHB-based copolymers with f up to 50% formed highly stable micelles at 37 °C over a period of 10 days in aqueous solution. PMLA-b-PHB as well as PTMC-b-PMLA copolymers revealed no acute in-vitro cytotoxicity. The use of PHB as hydrophobic segment enabled to minimize the non-specific scavenging by macrophages cells while the cellular uptake by hepatocytes was favored.
7

Single-Step Covalent Functionalization of Polylactide Surfaces / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)

Källrot, Martina January 2005 (has links)
<p>Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation.</p><p>In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM.</p> / <p>Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler.</p><p>I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM.</p>
8

Covalent Surface Modification of Degradable Polymers for Increased Biocompatibility / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)

Källrot, Martina January 2005 (has links)
Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation. In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM. / Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler. I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM. / QC 20101014

Page generated in 0.5008 seconds