• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 131
  • 131
  • 131
  • 73
  • 65
  • 36
  • 29
  • 25
  • 24
  • 24
  • 23
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

POWER MAXIMIZATION FOR PYROELECTRIC, PIEZOELECTRIC, AND HYBRID ENERGY HARVESTING

Shaheen, Murtadha A 01 January 2016 (has links)
The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters. A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. This method demonstrates that for pyroelectric materials the impedance depends on two major factors: average working temperature, and the heating rate. Design and implementation of a hybrid approach using multiple piezoelectric cantilevers is presented. This is done to achieve mechanical and electrical tuning, along with bandwidth widening. In addition, a hybrid tuning technique with an improved adjusting capacitor method was applied. An toroid inductor of 700 mH is shunted in to the load resistance and shunt capacitance. Results show an extended frequency range up to 12 resonance frequencies (300% improvement) with improved power up to 197%. Finally, a hybrid piezoelectric and pyroelectric system is designed and tested. Using a voltage doubler, circuit for rectifying and collecting pyroelectric and piezoelectric voltages individually is proposed. The investigation showed that the hybrid energy is possible using the voltage doubler circuit from two independent sources for pyroelectrictity and piezoelectricity due to marked differences of optimal performance.
62

Active Response of Polymer Materials from External Stimuli – Solvents and Light; Grafting Reactions on Perovskite Layers

Zhang, Jianxia 18 May 2012 (has links)
The active response of a series of polymeric materials was investigated. Both solvent activated and light activated thin films and wire systems show dynamic behaviors when exposed to different stimuli. Solvent mediated fluxional behavior of polymer thin films involved extensive, rapid curling both on infusion and evaporation of good solvents. These films can be either lab-fabricated ones or commercial ones, and the curling behavior can be as fast as seconds. Conditions including polymer materials, chosen solvents, and film geometry can affect the behavior. Methods that allowed for the creation and retention of distorted wire structures were also developed; the asymmetric sputtering of metal components on micron-sized wires permitted for the capture of curled wire components on solvent exposure. The asymmetric metal coated wires which were fabricated within a template of glass capillary arrays (GCA) membrane have shown instant (< 1 s) deformation when exposed to the proper solvents. Deformed shapes can be retained or the original linear shape recovered, depending on the metal film thicknesses. Photostimulation of wires was also investigated and showed a notable dynamic response but not as extensive as with the solvent induced behavior. Micron sized wires made with azobenzene-polyacrylate, exhibited a bending behavior when irradiated with 365 nm UV light and recovered under visible light. The bending behavior can be as slow as several minutes per degree while recovery was relatively faster. Additional efforts with polymers involved the formation of polymeric organic-inorganic hybrids where organic monomers, grafted to perovskite layers, were polymerized within the oxide’s interlayers. Reactions were carried out on protonated perovskite, hydrogen lanthanum niobate (HLaNb2O7). Alcoxyl groups were first grafted to the oxide and the monomer was substituted by exchange reaction with the alcoxyl groups.
63

The Development of a Laminated Copolyester Electric Guitar

Karnes, Addison S 01 December 2014 (has links)
This thesis is an investigation of the fabrication and assembly methodologies employed in the development of a proof-of-principle prototype electric guitar composed of laminated copolyester. The objective of the project was to develop the processes and procedures to create an optimized physical and visual bond between layers to minimize vibratory dissipation, thus maximizing sustain. A high speed CNC router, abrasive waterjet, laser engraver-cutter, as well as various manual fabrication and assembly methods were investigated in the construction of the guitar prototypes. The lamination processes explored include low-temperature, heat-assisted pressure bonding, solvent and chemical welding, and contact adhesives. The project concluded with the completion of a working guitar comprised of a laminated copolyester body and a traditional bolton wooden neck.
64

Reconfigurable Antennas Using Liquid Crystalline Elastomers

Gibson, John 29 March 2018 (has links)
This dissertation demonstrates the design of reversibly self-morphing novel liquid crystalline elastomer (LCE) antennas that can dynamically change electromagnetic performance in response to temperature. This change in performance can be achieved by programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, and using these materials as substrates for reconfigurable antennas. Existing reconfigurable antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. Antennas using MEMS or diodes exhibit low efficiency due to the losses from these components. Also, antennas based on SMAs can change their performance only once as SMAs response to the stimuli and is not reversible. Flexible electronics are capable of morphing from one shape to another using various techniques, such as liquid metals, hydrogels, and shape memory polymers. LCE antennas can reconfigure their electromagnetic performance, (e.g., frequency of operation, polarization, and radiation pattern) and enable passive (i.e., battery-less) temperature sensing and monitoring applications, such as passive radio frequency identification device (RFID) sensing tags. Limited previous work has been performed on shape-changing antenna structures based on LCEs. To date, self-morphing flexible electronics, including antennas, which rely on stimuli-responsive LCEs that reversibly change shape in response to temperature changes, have not been previously explored. Here, LCE antennas will be studied and developed. Also, the metallization of LCEs with different metal conductors and their fabrication process, by either electron beam (E-Beam) evaporation or optical gluing of the metal film will be observed. The LCE material can have a significant impact on sensing applications due to its reversible actuation that can enable a sensor to work repeatedly. This interdisciplinary research (material polymer science and electrical engineering) is expected to contribute to the development of morphing electronics, including sensors, passive antennas, arrays, and frequency selective surfaces (FSS).
65

Strong Spin Orbital Coupling Effect on Magnetic Field Response Generated by Intermolecular Excited States in Organic Semiconductors

Yan, Liang 01 August 2011 (has links)
It has been found that non-magnetic organic semiconductors can show some magnetic responses in low magnetic field (<100 >mT). When applying magnetic field, the electroluminescence, electrical current, photocurrent, and photoluminescence could change with magnetic field, which are called magnetic field effects. Magnetic field effects are generated through spin-dependent process affected by the internal magnetic interaction. In nonmagnetic materials, hyperfine interaction has been supposed to dominantly affect the spin-dependent process recently. But the conclusion was made in weak spin-orbital coupling organic semiconductor. The hyperfine interaction might not be the main reason responsible for magnetic field effects in strong spin-orbital coupling materials. Therefore, the study of magnetic field effects in strong spin-orbital coupling organic semiconductor is important to get a whole view of the origin of the magnetic field effects in nonmagnetic organic semiconductors. This dissertation will clarify the generation mechanism of magnetic field effect in nonmagnetic organic semiconductors and further explore how the strong spin-orbital coupling affecting the magnetic field effect. It has been found the intermolecular excited states are important inter-median for magnetic field effects. The change of intersystem crossing at intermolecular excited states will change the singlet/triplet ratio and further generate magnetic field effects through different recombination and dissociation properties of singlet and triplet intermolecular excited states. Both the energy transfer effect coupled spin orbital coupling and energy transfer effect free spin orbital-coupling are discussed in the dissertation. The tuning of the magnetic field effect by adjusting the spin-orbital coupling is also established through distance effect and interface effect. It has been found that changing inter-molecular spin-orbital coupling is a critical factor to generate magnetic field effects in organic semiconductors. And the sensitivity of different magnetic field effects to strong spin-orbital coupling strength is depending on the final product. The internal magnetic interaction can be hyperfine interaction, spin orbital coupling and spin-spin interaction between electrons. The hyperfine interaction and spin orbital coupling are important in nonmagnetic organic semiconductors. But the electron spin-spin interaction is important in magnetic organic semiconductors. The magnetocurrent for magnetic and nonmagnetic organic semiconductors at different temperature has been compared.
66

Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks (MOFs)

Xiong, Ruichang 01 May 2010 (has links)
Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage. This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of RDX in several IRMOFs. Because gathering experimental data on explosive compounds is dangerous, data is limited. Simulation can in part fill the gap of missing information. Through these simulations, many of the key issues associated with MOFs preconcentrating RDX have been resolved. The issues include both theoretical issues associated with the computational generation of properties and practical issues associated with the use of MOFs in explosive-sensing system. Theoretically, we evaluate the method for generating partial charges for MOFs and the impact of this choice on the adsorption isotherm and diffusivity. Practically, we show that the tailoring of an MOF with a polar group like an amine can lead to an adsorbent that (i) concentrates RDX from the bulk by as much as a factor of 3000, (ii) is highly selective for RDX, and (iii) retains sufficient RDX mobility allowing for rapid, real time sensing. Many of the impediments to the effective explosive detection can be framed as shortcomings in the understanding of molecule surface interactions. A fundamental, molecular-level understanding of the interaction between explosives and functionalized MOFs would provide the necessary guidance that allows the next generation of sensors to be developed. This is one of the main driving forces behind this dissertation. Another important achievement in this work is the demonstration of a new direction for tailoring MOFs. A new class of tailored MOFs containing porphyrins has been proposed. These tailored MOFs show greater capability for hydrogen storage, which also demonstrated the great functionalization of MOFs and great potential to serve as preconcentrators. The use of a novel multiscale modeling technique to develop equations of state for inhomogeneous fluids is included as a supplement to this dissertation.
67

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial). The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform. The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates. The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.
68

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform.The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates.The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.
69

INFLUENCE OF SURFACE MODIFICATION ON PROPERTIES AND APPLICATIONS OF COMPLEX ENGINEERED NANOPARTICLES

Wang, Binghui 01 January 2013 (has links)
Complex engineered nanoparticles (CENPs) are being used on various applications. Their properties are different from those of neat nanoparticles. The dissertation explores these differences from four aspects: 1) Modify carbon nanomaterials’ inert surfaces and investigate the effect on thermal and rheological behavior of their dispersions; 2) Generate self-assembly bi-layer structure of oxide nanoparticles via surface modification; 3) Study interaction between lysozyme and different surface-charged ceria nanoparticles; 4) Investigate the biodistribution and transformations of CENPs in biological media. An environment-friendly surface modification was developed to modify surfaces of carbon nanomaterials for increasing their affinity to non-polar fluid. It can offset formation of agglomerates in dispersions. Less agglomerates change thermal conductivity and rheological behavior. One combined model, considering shape factor, was built to fit non-linear enhancement on thermal conductivity with volume fraction of nanoparticles. Constructing bi-layer structure of oxide nanoparticles with different refractive index was crucial for optical thin films. Silanization was used to transform relatively hydrophilic surface of oxide nanoparticles to hydrophobic surface via attaching alkane chains. The self-assembly separation of these nanoparticles can form bi-layer structure in single deposition process since neat nanoparticles keep in hydrophilic monomer while surface-modified nanoparticles settled down. The adsorption behaviors of lysozyme, one protein with net positive charge, on different surface-charged ceria nanoparticles were investigated. The adsorption isotherm curves were fitted with the Toth and Sips equations satisfactorily. The heterogeneity parameters suggest the surface charge predominate adsorption on negatively charged ceria while lateral effect predominate adsorption on positively charged ceria. The local site energy distributions were also estimated. The 26Al-labeled nanoalumina coated by 14C-labeled citrate was synthesized and its dispersion was infused intravenously into rat. The Accelerator Mass Spectrometer (AMS) was used to measure isotopes in dosing material and tissues. The ratio of coating and core in liver was slightly less than dosing material while the ratios in brain and bone are much higher than dosing material. It may suggest that some citrate coating dissociated from nanoalumina’s surface, entered metabolic cycles, and then redistributed to other organs.
70

MAGNESIUM-TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS

Hoffmann, Ilona 01 January 2014 (has links)
Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium. Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy powders made by ball-milling into bulk material without destroying the alloy structure. This is an important finding as this metastable Mg-Ti alloy can only be heated up to max. 200C° for a limited time without reaching the stable state of separated magnesium and titanium. The superior corrosion behavior of Mg80-Ti20 alloy in a simulated physiological environment was shown through hydrogen evolution tests, where the corrosion rate was drastically reduced compared to pure magnesium and electrochemical measurements revealed an increased potential and resistance compared to pure magnesium. Cytotoxicity tests on murine pre-osteoblastic cells in vitro confirmed that supernatants made from Mg-Ti alloy were no more cytotoxic than supernatants prepared with pure magnesium. Mg and Mg-Ti alloys can also be used to make novel polymer-metal composites, e.g., with poly(lactic-co-glycolic acid) (PLGA) to avoid the polymer’s detrimental pH drop during degradation and alter its degradation pattern. Thus, Mg-Ti alloys can be fabricated and consolidated while achieving improved corrosion resistance and maintaining cytocompatibility. This work opens up the possibility of using Mg-Ti alloys for fracture fixation implants and other biomedical applications.

Page generated in 0.1363 seconds