• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 131
  • 131
  • 131
  • 73
  • 65
  • 36
  • 29
  • 25
  • 24
  • 24
  • 23
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Fabrication of Thin-Film Composite, Reverse-Osmosis Membranes with Polyethylenimine Modifications for Enhancing Membrane Fouling Resistance

Hamilton, Stephanie N 01 November 2022 (has links) (PDF)
Increasing water reuse opportunities for communities has become increasingly important as access to clean water is becoming more scarce. Reverse Osmosis (RO) is an advanced treatment technology used in water recycling wastewater for potable reuse applications. RO is a promising technology; however, the membranes have limitations including their high energy demand and their susceptibility to membrane fouling. The main objective of this study was to develop a reproducible method for the fabrication of RO membranes with enhanced flux and reduced susceptibility to fouling. Literature contains numerous publications on fabrication of thin film composite (TFC) RO membranes with high performance. However, the reports lacked all the details needed to fabricate a TFC RO membrane, making it difficult to replicate those published fabrication protocols. Based on the efforts of this study, the membrane fabrication procedures utilized did not yield the same quality and performance as reported in these articles. In this study, five TFC RO control membranes were replicated and compared. The membranes produced an average water flux of 21.9 ± 3.6 L/m2h (LMH) and an average salt rejection of 97.6% ± 2.0%. Based on these results, it was concluded that a reproducible fabrication technique was developed for fabricating consistent and reliable TFC RO membranes. Furthermore, this study investigated the role of fouling on TFC RO membrane performance. Enhancing membrane resistance to fouling helps maintain membrane selectivity, lifespan, and permeability. There has been an increasing interest in the modification of the RO membranes for enhanced hydrophilicity, which leads to improvements in fouling resistance. In this study, a positive and high charge density polymer, polyethylenimine (PEI), was introduced into the membrane matrix in varying layers of the membrane structure. PEI-1 was fabricated in-situ by grafting the PEI onto the polysulfone (PSf) support, while PEI-2 was fabricated via grafting of the PEI onto the membrane PA surface. The resulting membranes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), and Goniometry. PEI-2 produced a more hydrophilic membrane when compared to PEI-1, however, PEI-1 performed better in terms of flux and selectivity. Multiple model foulants were used for investigating the modified membrane fouling performance. These model foulants were tested at varying concentrations, pH values, and with and without the presence of Ca2+ ions. The model foulants used were bovine serum albumin (BSA), sodium alginate, and humic acid. None of the model foulants resulted in a decrease in performance for the membrane over the duration of the tests (up to 13 hours). Future research is needed to develop a robust protocol for testing the fouling of the produced RO membranes within a reasonable timeframe.
52

Fabrication of Alumina Membranes From Uv Resin– Alumina Particle Slurries

Porcincula, Dominique Henry 01 December 2023 (has links) (PDF)
Ceramics membranes are made in a wide variety of different techniques using a wide variety of different materials. However, many of the common techniques utilize a slurry of ceramic particles, additives, and either organic solvent or water that is shaped into a membrane, left to dry, and then sintered together. Drying is a time consuming process, often requiring several hours for the liquid medium to evaporate. Defect formation caused by development of partial pressures across the drying membrane, including cracks and warpage, also typically occurs during the drying process. To address this, slurries of ceramic particles made with a low viscosity UV-curable resin, which can cure in the span of a few seconds, eliminating the need for drying and any defects associated with drying. Slurries were made with different particle sizes and volume fractions and made into thin membranes using an Autodesk Ember 3D printer. Curing of UV resin and slurries were examined with FTIR. Pyrolytic behavior of resin was examined using isothermal TGA. Cure depth profiles were determined using the modified Beer-Lambert Law and compared against models in literature. Results showed contrasting curing behavior based on volume fraction and particle size due to differences in UV light exposure methods.
53

Tuning the Properties of Metal-Ligand Complexes to Modify the Properties of Supramolecular Materials

Henderson, Ian 01 May 2012 (has links)
Supramolecular chemistry is the study of discreet molecules assembled into more complex structures though non-covalent interactions such as host-guest effects, pi-pi stacking, electrostatic effects, hydrogen bonding, and metal-ligand interactions. Using these interactions, complex hierarchical assembles can be created from relatively simple precursors. Of the supramolecular interactions listed above, metal-ligand interactions are of particular interest due to the wide possible properties which they present. Factors such as the denticity, polarizability, steric hindrance, ligand structure, and the metal used (among others) contribute to a dramatic range in the physical properties of the metal-ligand complexes. Particularly affected by these factors are the kinetic and thermodynamic properties of the complexes. As a result metal-ligand interactions can vary from inert to extremely transient. Of the vast number of ligands available for study, this dissertation will center on substituted terpyridine ligands, with a particular focus on terpyridine-functionalized polymers. While polymer-functionalized terpyridine ligands and their complexes with transition metals have been heavily studied, the physical properties, particularly the effects of polymer functionalization on the stability of bis complexes of terpyridines, remain unexplored. In the course of investigating the kinetic stability of these complexes, polymer functionalization techniques were developed which were found to increase the stability of the metal-ligand interactions compared to conventional techniques. In addition to studying the effect of terpyridine substituents, the effects of solvent on the stability of the complexes was studied as well. As polymer-bound terpyridine complexes are often studied in solvents other than water, knowledge of the stability of the complexes in organic solvents is important to create supramolecular structures with more precisely controlled properties. It was found that, for unsubstituted terpyridyl complexes, the stability of the complexes varied by as many as five orders of magnitude in common solvents. It is believed that this decrease in stability is the result of the ability of the solvent to facilitate the movement of the ligands from the first and second coordination spheres. Although a large part of this dissertation is dedicated to the study of the kinetic stability of terpyridine complexes, synthetic techniques involving terpyridine and its complexes were investigated as well. It was found that terpyridine functionalized polystyrene could be produced by direction functionalization of terpyridine with polystyryllithium. Additionally heterloleptic terpyridine-based iron complexes were produced with high purity by reduction of the mono terpyridine complex of iron(III) in the presence of a second, functionalized terpyridine ligand. The culmination of these studies was the synthesis of supramolecular organogels, which were crosslinked using metal-terpyridine complexes, yielding dynamic mechanical properties could be broadly tuned by varying the metal used to form the crosslinks.
54

Phase Behavior of Block Copolymers in Compressed CO2 and as Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 nm Pattern Transfer

Chandler, Curran Matthew 01 September 2011 (has links)
Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts - the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-b-isoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2-3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6-7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4-based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.
55

Surface Instabilities for Adhesion Control

Davis, Chelsea Simone 01 May 2012 (has links)
Controlling the specific adhesive properties of surfaces is a technologically complex challenge that has piqued the interest of many research groups around the world. While many scientists have used complex topographic and chemically altered surfaces to tune adhesion, others have shown that naturally occurring phenomena, such as elastic instabilities, can impact adhesion. We provide a thorough investigation into the effects of periodic surface buckling instabilities, or wrinkles, on adhesion. Wrinkles are an attractive surface patterning alternative as they form spontaneously over large areas and their dimensions, namely wavelength and amplitude, can be controlled on length scales relevant for adhesion control. We focus on the development of fundamental relationships that relate wrinkle adhesion to materials properties and topographic feature geometry. To accomplish this goal, we first investigate the separation of a flat rigid punch from a single elastic cylinder, which models the separation of a single wrinkle. The knowledge gained from this study is then utilized to develop a scaling expression relating adherence force to wrinkle geometry, materials properties, and testing geometry. This scaling theory is validated by varying these parameters systematically in a series of model wrinkle adhesion experiments. Added complexity in the form of varied crosslinker density, which alters the ratio of storage to loss moduli, and geometric confinement effects on wrinkle adhesion are then studied. Finally, a novel technique for fabricating biaxial wrinkles with two independently-adjusted wavelengths is developed, adding an additional parameter which can be tuned to further control adhesion. A single elastic cylinder was probed with a finite rigid flat probe, allowing the separation mechanism of a single "macro" scale wrinkle to be determined. Rather than a long cylinder contact mechanism, which has been utilized in describing wrinkle adhesion mechanisms in the past, an elliptical contact area approximation was found to more appropriately describe the single cylinder adhesion data. To consider the impact of an array of cylinders on adhesion, a model wrinkle system comprised of an elastomeric foundation and chemically-simple polymer film was developed. The wrinkle wavelength, amplitude, substrate modulus, and probe radius were varied, and the normal adhesive response of each aligned wrinkled surface was determined. Overall, wrinkles were found to decrease the separation force relative to a smooth surface and the separation force varied inversely with the square root of a wrinkle dimension, either wavelength or amplitude. The effects of viscoelasticity on the adhesion of a wrinkled substrate that is geometrically confined was studied. Wrinkled surface features were molded onto the surface of a rigid cylindrical probe, and the normal adhesion of these probes contacting thin elastomeric films fabricated with varying crosslinker concentrations was measured. The materials-defined length scale relating adhesion energy and modulus controlled the wrinkle feature sizes that impacted the adhesive response of each smooth film. In the most highly crosslinked films, small wrinkles increased both the separation force and adhesion energy of the interface two-fold, while large wrinkles reduced adhesion to almost nothing. Capitalizing on knowledge gained in the fabrication of many wrinkled surfaces, a novel technique for fabricating biaxial wrinkles was developed. Aligned wrinkles were formed on a partially crosslinked substrate, the modulus of the substrate was increased by allowing the material to crosslink completely, and a mechanical compressive strain was then imposed orthogonal to the primary wrinkle direction. This process resulted in the formation of biaxial wrinkled surfaces with two distinct, independently controlled lateral dimensions or wavelengths.
56

Controlling Morphology in Swelling-Induced Wrinkled Surfaces

Breid, Derek 01 February 2012 (has links)
Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more complex geometric and kinetic settings. In order to carefully control and measure the applied stresses on a wrinkling film, a swelling-based system was developed using poly(dimethylsiloxane) (PDMS), surface-oxidized with a UV-ozone treatment. The swelling of the oxidized surface upon exposure to an ethanol vapor atmosphere was characterized using beam-bending experiments, allowing quantitative measurements of the applied stress. The wrinkle morphologies were characterized as a function of the overstress, defined as the ratio of the applied swelling stress to the critical buckling stress of the material. A transition in the dominant morphology of the wrinkled surfaces from dimple patterns to ridge patterns was observed at an overstress value of ~2. The pattern dependence of wrinkles on the ratio of the principal stresses was examined by fabricating samples with a gradient prestress. When swollen, these samples exhibited a smooth morphological transition from non-equibiaxial to equibiaxial patterns, with prestrains as low as 2.5% exhibiting non-equibiaxial characteristics. This transition was seen both in samples with low and high overstresses. To explore the impact of these stress states in more complex geometries, wrinkling hemispherical surfaces with radii of curvature ranging from 50-1000 μm were fabricated using the same material system. Upon wrinkling, the hemispheres formed complex hierarchical assemblies reminiscent of naturally occurring structures. The curvature of a surface exhibited a correlation with its critical buckling stress, independent of other factors. This enables the surface curvature to be used as an independent control over the dimple-to-ridge transition which occurs as a function of overstress. As in the flat buckling surfaces, this transition was shown to occur at an overstress value of ~2. Surface curvature was also shown to improve the observed hexagonal ordering of the dimple arrays, resulting in the formation of regular "golf ball" structures. Geometric effects in finite flat plates were also examined. Using circular masks during the oxidation process, plates with radii ranging from 0.4-8.6 mm were created. Upon wrinkling, a dimple-to-ridge transition was observed with increasing plate size, with the morphological switch occurring at a radius of ~2 mm. This observed transition was not found to be due to the inherent mechanics of plates of different sizes, but instead to a reduction in the oxide conversion due to shadowing or stagnation caused by the masking process, which lowered the applied overstress. The shape of the finite plate was found to have little impact on the resulting wrinkle morphologies. Kinetic aspects of wrinkling were qualitatively characterized by observing the wrinkling process over the course of swelling. Wrinkling was observed to frontally propagate across the surface, and the ordering of the patterns which developed showed a qualitative correlation with the degree of uniformity in the advancing wrinkle front. Swelling with different solvents was found to lead to the formation of different patterns, based on the swelling kinetics of the UVO-treated PDMS upon exposure to each solvent.
57

Incorporating Epoxy and Amine into Poly(Methyl Methacrylate) for a Crosslinkable Waterborne Coating

Song, Jichao 01 September 2021 (has links)
The global market for waterborne coatings will continue to grow because alternative solventborne coatings emit environmentally hazardous volatile organic compounds (VOCs). However, most waterborne coatings are softer than solventborne crosslinked thermoset coatings because they feature thermoplastic polymer dispersions. To overcome these challenges, in this thesis we suggest a novel crosslinkable aqueous dispersion system that incorporates epoxy and amine particles into poly(methyl methacrylate) (PMMA); the particles will react when water (the solvent) evaporates, offering a potential one-component (1K) reactive system. Emulsion polymerization was used to synthesize the particles with the help of surfactants. Epoxy and amine particles were successfully incorporated during the synthesis of PMMA and formed a two-component (2K) aqueous dispersion. In this process, a non-ionic surfactant, Triton X405 (TX405), was used to prevent interactions with the amine particles. Nuclear magnetic resonance (NMR) was used to determine the actual incorporation ratios of epoxy and amine and we found an epoxy incorporation plateau. Dynamic light scattering (DLS) was used to determine the particle size distributions and a uniform distribution was observed. The pendulum test and the pencil test were used for coating hardness, which surpassed currently marketed waterborne coatings. The resulting aqueous dispersions could be cured under facile conditions, i.e., in air and at low temperatures. An increase in Tg was observed after crosslinking. Different mechanical properties were observed when the coatings were cured at different temperatures, 25°C, 70°C, and 100°C. These results suggest that we have successfully formed crosslinked coatings that contain our epoxy and amine incorporated particles, with mechanical properties comparable to the traditional solventborne coatings.
58

ELECTROPHORETIC DEPOSITION OF ORGANIC - INORGANIC NANOCOMPOSITES

Sun, Yanchao 10 1900 (has links)
<p>Electrochemical deposition methods have been developed for the fabrication of organic - inorganic nanocomposite coatings. The methods are based on electrophoretic deposition of ceramic nanoparticles and polymers.</p> <p>EPD method has been developed for the deposition of nanostructured TiO<sub>2</sub> films using new dispersing agents. The stabilization and charging of the nanoparticles in suspensions was achieved using these organic molecules, which belong to catecholate and salicylate families. Anodic deposition was achieved using caffeic acid, 2,3-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 5-sulfosalicylic acid. Cathodic deposition was performed using 2,4 dihydroxycinnamic acid, p-coumaric acid and trans cinnamic acid. The deposition yield has been studied as a function of the additive concentration and deposition time. The deposition mechanism has been investigated. The fundamental adsorption mechanism is based on the complexation of metal ions at the surfaces of oxide nanoparticles. The method enabled the co-deposition of TiO<sub>2</sub> and other oxides and the formation of composite films.</p> <p>Electrophoretic deposition method has been used for the deposition of TiO<sub>2</sub> nanoparticles modified with organic dyes. Alizarin red, alizarin yellow, pyrocatechol violet and Aurintricarboxylic acid dyes were used for the dispersion and charging of TiO<sub>2</sub>. The microstructures of the nanocomposite coatings were studied. The deposition yield was investigated under a variety of conditions. Obtained results could pave the way for the fabrication of dye-sensitized TiO<sub>2</sub> films.</p> <p>EPD method has also been developed for the fabrication of (Poly[3-(3-N,N-diethylaminopropoxy)thiophene]) PDAOT-TiO<sub>2</sub>, (polyethylenimine) PEI-TiO<sub>2</sub> and PEI-hydrotalcite composite films. The microstructures of the nanocomposite coatings were studied by Scanning Electron Microscopy, Thermogravimetric Analysis, which showed the co-deposition of inorganic nanoparticles and organic polymer. Electrochemical test of the composite film has been conducted. The results showed that PEI film provided corrosion protection of the stainless steel substrates.</p> / Master of Science (MSc)
59

Predicting Rheology Of UV-Curable Nanoparticle Ink Components And Compositions For Inkjet Additive Manufacturing

Lutz, Cameron D 01 June 2024 (has links) (PDF)
Inkjet additive manufacturing is the next step toward ubiquitous manufacturing by enabling multi-material printing that can exhibit various mechanical, electronic, and thermal properties. These characteristics are realized in the careful formulation of the inks and their functional materials, but there are many constraints that need to be satisfied to allow optimal jetting performance and build quality when used in an inkjet 3-D printer. Previous research has addressed the desirable rheology characteristics to enable stable drop formation and how the metallic nanoparticles affect the viscosity of inks. The contending goals of increasing nanoparticle-loading to improve material deposition rates while trying to maintain optimal flow dynamics is the closely held trade secret in formulating these inkjet compositions. We use data from previous experiments and the CRC Handbook of Chemistry and Physics to train machine learning regression models to predict the relevant factors of inkjet printability at a standardized temperature of 25ºC: viscosity, surface tension, and density. These models were used to predict the rheological factors of the main components of a UV-curable inkjet ink formulation: UV-curable monomers and oligomers, photoinitiators, dispersants, and humectants. This paper compares the relative performance of five machine learning algorithms to assess the effectiveness of each approach for chemoinformatics regression tasks.
60

Peracetic Acid Sterilization of Electrospun Polycaprolactone Scaffolds

Yoganarasimha, Suyog 01 January 2015 (has links)
Sterilization of tissue engineered scaffolds is an important regulatory issue and is at the heart of patient safety. With the introduction of new biomaterials and micro/nano structured scaffolds, it is critical that the mode of sterilization preserve these built-in features. Conventional sterilization methods are not optimal for engineered polymeric systems and hence alternate systems need to be identified and validated. PCL is polyester with a low melting point (heat labile), susceptible to hydrolysis and is popular in tissue engineering. Electrospinning generates some nanoscale features within the scaffold, the integrity of which can be affected by sterilization method. Chapter 1 explores the possibility of using Peracetic acid (PAA) to sterilize polymeric scaffolds that are sensitive to heat or moisture. PAA is a strong oxidizing agent that has been approved for sterilizing catheters and endoscopes. The ability of PAA to sterilize at room temperature, its breakdown into non-toxic end products and effectiveness at low concentrations are major advantages. Chapter 2 evaluates the ability of PAA-sterilized PCL scaffolds (PAA-PCL) to support survival and proliferation of mouse calvarial osteoblast cell line, MC3T3. While Ctrl-PCL scaffolds (ethanol-disinfected) showed robust cell survival, PAA-PCL scaffolds induced massive cell death. Following interrelated hypotheses are tested: the observed cytotoxicity was due adsorption of PAA and/or hydrogen peroxide onto PCL fibers during sterilization; and elimination of adsorbed residues will restore scaffold cytocompatibility. Neither extensive aeration nor chemical neutralization with sodium thiosulfate and catalase were effective in improving cell survival. However, quenching PAA-PCL scaffolds in 70% ethanol for 30 minutes effectively removed adsorbed PAA residues and completely restored cell viability and proliferation over a 7 day period. In order to test if PAA-induced toxicity was limited to electrospun PCL scaffolds, commercially available, porous polystyrene scaffolds (Alvetex®) was treated with PAA. Interestingly, a statistically significant increase in cell survival and proliferation resulted with PAA treatment and this was abolished by ethanol quenching. Combined, these results illustrate that PAA treatment can produce diametrically opposite effects on cell survival depending on substrate chemistry and that PAA can be used to effectively sterilize tissue engineering scaffolds without compromising cell viability.

Page generated in 0.1057 seconds