• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção de materiais plásticos resistentes a riscos para componentes automotivos. / Selection of scratchresistant plastic materials for automotive components.

Ventura, Aline Cristina Ferreira 28 March 2018 (has links)
Este estudo se refere a um método para selecionar os materiais plásticos resistentes a riscos mais adequados para peças automotivas. Estabelecer este procedimento é fundamental para as montadoras devido à versatilidade, qualidade e custo competitivo que os polímeros apresentam. Contudo, essa é uma atividade árdua, pois nota-se a ausência de profissionais familiarizados em trabalhar com materiais plásticos e a existência de milhares de materiais disponíveis para utilização. Deste modo, formular um processo estruturado para facilitar a seleção de plásticos tem como objetivo minimizar os riscos e erros do projeto. Portanto, o processo concebido para esta pesquisa foi gerado a partir da estratégia de seleção desenvolvida por Ashby, método tido como referência na área. Além deste, também foram utilizados conceitos da matriz de decisão de Pahl & Beitz, incluindo índice de mérito. Dois exemplos de aplicação da metodologia são apresentados através de estudos de caso, com os componentes tampa do porta-luvas e base do espelho lateral. / This dissertation work is focused on a method to select the most suitable plastic material with scratch resistance for automotive parts. This process is essential for the automakers due to the versatility, improved quality and cost competitiveness of resin materials. Nonetheless, the lack of professionals specialized in plastic materials and the large variety of polymeric materials makes the proper material selection challenging. In this way, it is necessary to define a systematic method to simplify polymeric materials selection in order to reduce the project risks and errors. For this reason, the process proposed in this study was generated based from the selection strategy developed by Ashby, as this is a reference in the field. In addition, two other concepts were adopted: Pahl & Beitz decision matrix and merit index. In order to evaluate this systematic method, two case studies were analyzed: glove compartment and side mirror base.
2

Seleção de materiais plásticos resistentes a riscos para componentes automotivos. / Selection of scratchresistant plastic materials for automotive components.

Aline Cristina Ferreira Ventura 28 March 2018 (has links)
Este estudo se refere a um método para selecionar os materiais plásticos resistentes a riscos mais adequados para peças automotivas. Estabelecer este procedimento é fundamental para as montadoras devido à versatilidade, qualidade e custo competitivo que os polímeros apresentam. Contudo, essa é uma atividade árdua, pois nota-se a ausência de profissionais familiarizados em trabalhar com materiais plásticos e a existência de milhares de materiais disponíveis para utilização. Deste modo, formular um processo estruturado para facilitar a seleção de plásticos tem como objetivo minimizar os riscos e erros do projeto. Portanto, o processo concebido para esta pesquisa foi gerado a partir da estratégia de seleção desenvolvida por Ashby, método tido como referência na área. Além deste, também foram utilizados conceitos da matriz de decisão de Pahl & Beitz, incluindo índice de mérito. Dois exemplos de aplicação da metodologia são apresentados através de estudos de caso, com os componentes tampa do porta-luvas e base do espelho lateral. / This dissertation work is focused on a method to select the most suitable plastic material with scratch resistance for automotive parts. This process is essential for the automakers due to the versatility, improved quality and cost competitiveness of resin materials. Nonetheless, the lack of professionals specialized in plastic materials and the large variety of polymeric materials makes the proper material selection challenging. In this way, it is necessary to define a systematic method to simplify polymeric materials selection in order to reduce the project risks and errors. For this reason, the process proposed in this study was generated based from the selection strategy developed by Ashby, as this is a reference in the field. In addition, two other concepts were adopted: Pahl & Beitz decision matrix and merit index. In order to evaluate this systematic method, two case studies were analyzed: glove compartment and side mirror base.
3

Modeling and Data Analysis of Conductive Polymer Composite Sensors

Lei, Hua 26 October 2006 (has links) (PDF)
Conductive polymer composite sensors have shown great potential in identifying gaseous analytes. To more thoroughly understand the physical and chemical mechanism of this type of sensors, a model was developed by combining two sub-models: a conductivity model and a thermodynamic model, which gives a relationship between the vapor concentration of analyte(s) and the change of the sensor signals. In this work, 64 chemiresistors representing eight different carbon concentrations (8–60 vol.% carbon) were constructed by depositing thin films of a carbon black–polyisobutylene composite onto concentric spiral platinum electrodes on a silicon chip. The responses of the sensors were measured in dry air and at various vapor pressures of toluene and trichloroethylene. Three parameters in the conductivity model were determined by fitting the experimental data. It was shown that by applying this model, the sensor responses can be predicted if the vapor pressure is known; furthermore the vapor concentration can be estimated based on the sensor responses. This model will guide the improvement of the design and fabrication of conductive polymer composite sensors for detecting and identifying organic vapors. A novel method was developed to optimize the selection of polymeric materials to be used within a chemiresistor array for anticipated samples without performing preliminary experiments. It is based on the theoretical predicted responses of chemiresistors and the criterion of minimizing the mean square error (MSE) of the chemiresistor array. After the number of chemiresistors to be used in an array and the anticipated sample chemistry are determined, the MSE values of all combinations of the candidate chemiresistors are calculated. The combination which has the minimum MSE value is the best choice. This can become computationally intensive for selection of polymers for large arrays from candidates in a large database. The number of combinations can be reduced by using the branch and bound method to save computation time. This method is suitable for samples at low concentrations where thermodynamic multi-component interactions are linear. To help users apply this polymer selection method for the sensors, a website including 10 solvents and 10 polymers was developed. Users can specify a target sample and obtain the best set of polymers for a sensor array to detect the sample. The activities of trichloroethylene and toluene in polyisobutylene were measured at very low concentrations. The activities for toluene are consistent with published values at higher concentrations. The values for trichloroethylene are a new contribution to the literature.

Page generated in 0.1001 seconds