Spelling suggestions: "subject:"porosity."" "subject:"morosity.""
171 |
The integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network modelsWill, Robert A. 30 September 2004 (has links)
This dissertation presents the development of a method for quantitative integration of seismic (elastic) anisotropy attributes with reservoir performance data as an aid in characterization of systems of natural fractures in hydrocarbon reservoirs. This new method incorporates stochastic Discrete Feature Network (DFN) fracture modeling techniques, DFN model based fracture system hydraulic property and elastic anisotropy modeling, and non-linear inversion techniques, to achieve numerical integration of production data and seismic attributes for iterative refinement of initial trend and fracture intensity estimates. Although DFN modeling, flow simulation, and elastic anisotropy modeling are in themselves not new technologies, this dissertation represents the first known attempt to integrate advanced models for production performance and elastic anisotropy in fractured reservoirs using a rigorous mathematical inversion. The following new developments are presented:
. • Forward modeling and sensitivity analysis of the upscaled hydraulic properties of realistic DFN fracture models through use of effective permeability modeling techniques.
. • Forward modeling and sensitivity analysis of azimuthally variant seismic attributes based on the same DFN models.
. • Development of a combined production and seismic data objective function and computation of sensitivity coefficients.
. • Iterative model-based non-linear inversion of DFN fracture model trend and intensity through minimization of the combined objective function.
This new technique is demonstrated on synthetic models with single and multiple fracture sets as well as differing background (host) reservoir hydraulic and elastic properties. Results on these synthetic control models show that, given a well conditioned initial DFN model and good quality field production and seismic observations, the integration procedure results in convergence of both fracture trend and intensity in models with both single and multiple fracture sets. Tests show that for a single fracture set convergence is accelerated when the combined objective function is used as compared to a similar technique using only production data in the objective function. Tests performed on multiple fracture sets show that, without the addition of seismic anisotropy, the model fails to converge. These tests validate the importance of the new process for use in more realistic reservoir models.
|
172 |
An investigation of interface reaction between BaTiO3 and SrTiO3Siao, Cyuan-You 05 August 2008 (has links)
The pseudo-binary system of BaTiO3-SrTiO3 ceramics offering potential applications in the electronic industry, particularly for the passive components, has been studied for its diffuse phase transition over the temperature range of +150oC and -50oC. This research concentrating on the interdiffusion between two sintered layers of such perovskite is a continuation of study, conducted by this author¡¦s group over the past years. Two-layer BaTiO3-SrTiO3 stacks were sintered at 1300oC and annealed for various time periods to investigate if and how the interdiffusion occurs across the BaTiO3-SrTiO3 interface. Optical microscopy reveals an interface layer consisting of polytitanate second phases, which appear to be large, chunky grains initially. Both results obtained from X-ray diffractometry and micro-chemical analysis using the energy-dispersive spectrometry, equipped with the scanning electron microscopy, suggest that the second phases are: Ba4Ti13O30, Ba2Ti9O20, Ba6Ti17O40 and BaTi2O5. These polytitanates are produced from the solid-state reaction between BaTiO3 and TiO2, which is left behind in the BaTiO3 layer when Ba2+ being the faster diffusion A-site cation have moved across into the SrTiO3 layer in a significantly higher content. The interface phases grow progressively to a coherent second-phase layer upon prolonged annealing for 100 h. It is revealed by the transmission electron microscopy that residual pores, similar to the Kirkendall type in the classical Cu-Zn diffusion couple, generated at ~100 £gm away from the interface and located in the BaTiO3 layer. This is attributed to the significantly different lattice diffusivities between two A-cations, i.e. Ba2+ being faster than Sr2+ by approximately three times, with A-site vacancies ( ) created in the grains of the BaTiO3 layer. Together with B-site cation vacancy ( ) and oxygen vacancy ( ), similar to the prismatic loops formed in quenched aluminium, condensation of vacancies via a reverse Schottky defect reaction has formed such Kirkendall-like pores within BaTiO3 grains. Interdiffusion has resulted in forming the solid solutions of (Ba,Sr)TiO3, with Sr2+ being solute cation, and (Sr,Ba)TiO3, with Ba2+ being solute cation, in the initial layers, respectively, and the characteristic core-shell grains responsible for the diffuse-phase transition. A mechanism of how cation diffusion produces the core-shell grains in both layers, modified from Bow (1990) and Liu (1991), is proposed.
|
173 |
An investigation of the streaming current method for determining the zeta potential of fibersCiriacks, John A., January 1967 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1967. / Includes bibliographical references (p. 69-71).
|
174 |
A study of the porous structure of fibrous sheets using permeability techniquesBliesner, William Clark, January 1963 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1963. / Includes bibliographical references (p. 181-184).
|
175 |
The thermal conductivity of dry and partially saturated fiber bedsMcMaster, David Gerald, January 1963 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1963. / Bibliography: leaves 116-118.
|
176 |
Synthesis and characterisation of size-selective nanoporous polymeric adsorbents for blood purificationWebb, Chris January 2011 (has links)
This thesis is concerned with the development and characterisation of polymeric nanoporous adsorbents to be used for blood purification. Current treatment methods for suffers of chronic renal failure are limited to haemodialysis, peritoneal dialysis and organ transplant. Organ transplant is the most efficient option however lack of donor organs mean that the majority of suffers rely on dialysis. Unfortunately both dialysis treatments are lacking when it comes to the removal of middle molecular weight molecules (MMs) (500 - 60000 Da) and the accumulation of these molecules has been attributed to a number of additional ailments suffered by those on long term dialysis. Sorbent augmented dialysis has been identified as a potential avenue to remove these MMs, an additional column would be introduced to the haemodialysis loop this would contain adsorbent particles to remove these unwanted molecules. Styrene-divinylbenzne copolymers have been identified as suitable for this task as they will non-specifically adsorb a wide range of molecules. One major concern with the introduction of a polymeric adsorbent is the potential removal of human serum albumin HSA from the patient's blood, this essential blood protein is present in very high concentrations typically 40g/l and this will potentially swamp the surface of any adsorbent. Fortunately HSA is a large blood protein (69kDa) and as such the method to combat this limitation as explored in this thesis is to tailor the pore structure of the polymeric adsorbent to size exclude albumin while retaining sufficient adsorption capacity to remove the MMs. To achieve these goals a number of polymeric adsorbents were generated using different porogens and degrees of crosslinking to control the porous structure. These adsorbents were analysed using a number of characterisation methods to assess their dry and swollen state porosities and molecular weight cut offs. Once a suitable material had been developed protein adsorption studies were carried out to confirm the size exclusion of HSA and the uptake of MMs.
|
177 |
Measurement and modeling of multiscale flow and transport through large-vug Cretaceous carbonatesNair, Narayan Gopinathan, 1980- 25 September 2012 (has links)
Many of the world's oil fields and aquifers are found in carbonate strata. Some of these formations contain vugs or cavities several centimeters in size. Flow of fluids through such rocks depends strongly upon the spatial distribution and connectivity of the vugs. Enhanced oil recovery processes such as enriched gas drives and groundwater remediation efforts like soil venting operations depend on the amount of hydrodynamic dispersion of such rocks. Selecting a representative scale to measure permeability and dispersivity in such rocks can be crucial because the connected vug lengths can be longer than typical core diameters. Large touching vug (centimeter-scale), Cretaceous carbonate rocks from an exposed rudist (caprinid) reef buildup at the Pipe Creek Outcrop in Central Texas were studied at three different scales. Single-phase airflow and gas-tracer experiments were conducted on 2.5 in. diameter by 5 in. long cores (core-scale) and 5- to 10-ft-radius well tests (field-scale). Zhang et al. (2005) studied a 10 in. diameter by 14 in. high sample (bench-scale). Vertical permeability in the bench-scale varied from 100 darcies to 10 md and in the core-scale averaged 2.5 darcies. The field-scale permeability was estimated to be 500 md from steady state airflow and pressure transient tests. In the bench and core scales a connected path of vugs dominates flow and tracer concentration breakthrough profile. Tracer transport showed immediate breakthrough times and a long tail in the tracer concentrations characterized by multiple plateaus in concentrations. Neither flow nor tracer transport can be explained at these scales by the standard continuum equations (Darcy’s law or 1D convection dispersion equation). However, interpreting field-scale measurements with standard continuum equations suggested that a strongly connected path of vugs did not extend past a few feet. In particular, the tracer experiment in the field scale can be modeled accurately using an equivalent homogeneous porous medium with a dispersivity of 0.5 ft. In our measurements, permeability decreased with scale, while vug connectivity and multi-scale effects associated with vug connectivity decreased with increasing scale. We concluded that approximately 5 ft could be considered the representative scale for the large-touching-vug carbonate rocks at the Pipe Creek Outcrop. The major contribution of this research is the introduction of an integrated, multi-scale, experimental approach to understanding fluid flow in carbonate rocks with interconnected networks of vugs too large to be adequately characterized in core samples alone. / text
|
178 |
Thermal Conductivity of Uranium Mononitride / Värmeledningsförmåga hos uranmononitridValter, Mikael January 2015 (has links)
Thermal conductivity is a crucial parameter for nuclear fuel, as it sets an upper limit on reactor operating temperature to have safety margins. Uranium mononitride (UN) is a prospective fuel for fast reactors, for which limited experimental studies have been conducted, compared to the currently dominating light-water reactor fuel, uranium dioxide. The aim of this thesis is to determine the thermal conductivity in UN and to determine its porosity dependence. This was done by manufacturing dense and porous high-purity samples of UN and examining them with laser flash analysis, which with data on specific heat and thermal expansion gives the thermal conductivity. To analyse the result, a theoretical study of the phenomenology of thermal conductivity as well as a review and comparison with previous investigations were carried out. The porosity range was 0.1–31% of theoretical density. Thermal diffusivity data from laser flash analysis, thermal expansion data and specific heat data was collected for 25–1400 C. The laser flash data had high discrepancy at higher temperatures due to thermal instability in the device and deviations due to graphite deposition on the samples, but the low temperature data should be reliable. As the specific heat data was also of poor quality, literature data was used instead. As for the thermal diffusivity data, the calculated thermal conductivity for lower temperatures are more accurate. A modified version of the porosity model by Ondracek and Schulz was used to analyse the porosity dependence of the thermal conductivity, taking into account the different impacts of open and closed porosity. / Värmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.
|
179 |
Numerical Calculation of Transport Properties of Rock with Geometry Obtained Using Synchrotron X-ray Computed Microtomography2013 November 1900 (has links)
Macroscopic properties of rocks are functions of pore-scale geometry and can be determined from laboratory experiments using rock samples. Macroscopic properties can also be determined from computer simulations using 3D pore geometries derived from various imaging techniques. Using 3D imagery and computer simulations, we can calculate the porosity, permeability, formation resistivity factor and cementation exponent in reservoir drill cores.
The objective of this thesis was to develop a workflow using Synchrotron X-ray Computed Microtomography (CMT) images and commercially available software in order to determine the macroscopic properties in reservoir drill cores for Midale Marly (M0) and Vuggy Shoal (V6) rocks. The workflow started by using CMT data that provided three-dimensional images of the reservoir rocks taken from drill cores in the Weyburn oil field. The resulting CMT grey scale images were used to isolate the pore space in the rock image. A three-dimensional mesh, representing the pore space, was then used to obtain the solution of the Navier-Stokes equations for an incompressible fluid and Laplace's equation for electrical current flow. Solutions of the Navier-Stokes equations were computed with different inlet pressures for the same pore geometry in order to confirm a direct proportionality between the mass fluid flux and pressure gradient as Darcy’s Law specifies. Previously measured laboratory transport properties were compared with my calculated transport properties on a smaller sub-volume of the same rock core imaged using 0.78 µm resolution CMT images. For the Midale Marly rock, the calculated permeability ranged from 0.01 to 3.53 mD. The formation resistivity factor ranged from 29.3 to 309.43 and the cementation exponent ranged from 1.99 to 2.10. The sample was verified to be nearly isotropic as the permeability was similar for three orthogonal fluid flow directions. Even though the sub-volume analyzed was smaller than a Representative Elementary Volume (REV), the results are within an order of magnitude of the previously calculated laboratory results as completed by Glemser (2007) and fall on the same power law trend. A Vuggy (V6) sample was investigated after the sample had been exposed to CO2, and dissolution within the rock matrix resulted in large visible pore spaces. Using 7.45 µm resolution CMT images, the permeability for a large isolated pore could not be calculated using the previous workflow due to computer memory limitations. Resampling enabled the data to fit into the available computer memory. The permeability values ranged from 2.66x10^5 to 8.59x10^5 mD for resampling the CMT images from 2x to 10x.
|
180 |
A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas ReservoirsYan, Bicheng 16 December 2013 (has links)
The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano- pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual porosity models and Darcy’s Law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of complex flow mechanisms occurring in these reservoirs.
Through the use of a unique simulator, this research work establishes a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three separate porosity systems: organic matter (mainly kerogen); inorganic matter; and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In the organic matter or kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of smaller pores (mainly nanopores and picopores) and larger pores (mainly micropores and nanopores) in kerogen are incorporated in the simulator. The separate inorganic sub-blocks mainly contribute to the ability to better model dynamic water behavior. The multiple porosity model is built upon a unique tool for simulating general multiple porosity systems in which several porosity systems may be tied to each other through arbitrary transfer functions and connectivities. This new model will allow us to better understand complex flow mechanisms and in turn to extend simulation to the reservoir scale including hydraulic fractures through upscaling techniques
|
Page generated in 0.0482 seconds