• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 104
  • 87
  • 55
  • 47
  • 45
  • 40
  • 29
  • 26
  • 20
  • 17
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Distinguishing between genuine and posed smiles

Ugail, Hassan, Aldahoud, Ahmad A.A. 20 March 2022 (has links)
No / This chapter presents an application of computational smile analysis framework discussed earlier. Here we discuss how one could utilise a computational algorithm to distinguish between genuine and posed smiles. We utilise aspects of the computational framework discussed in Chap. 2 to process and analyse the smile expression looking for clues to determine the genuineness of it. Equally, we discuss how the exact distribution of a smile across the face, especially the distinction in the weight distribution between a genuine and a posed smile can be achieved.
12

Are paranoid schizophrenia patients really more accurate than other people at recognizing spontaneous expressions of negative emotion? A study of the putative association between emotion recognition and thinking errors in paranoia

St-Hilaire, Annie 14 July 2008 (has links)
No description available.
13

Quadrature Approximation of Matrix Functions, with Applications

Martin, David Royce 19 June 2012 (has links)
No description available.
14

Identification of General Source Terms in Parabolic Equations

Yi, Zhuobiao January 2002 (has links)
No description available.
15

Numerical Solution of a Nonlinear Inverse Heat Conduction Problem

Hussain, Muhammad Anwar January 2010 (has links)
<p> The inverse heat conduction problem also frequently referred as the sideways heat equation, in short SHE, is considered as a mathematical model for a real application, where it is desirable for someone to determine the temperature on the surface of a body. Since the surface itself is inaccessible for measurements, one is restricted to use temperature data from the interior measurements. From a  mathematical point of view, the entire situation leads to a non-characteristic Cauchy problem, where by using recorded temperature one can solve a well-posed nonlinear problem in the finite region for computing heat flux, and consequently obtain the Cauchy data [u, u<sub>x</sub>]. Further by using these data and by performing an appropriate method, e.g. a space marching method, one can eventually achieve the desired temperature at x = 0.</p><p>The problem is severely ill-posed in the sense that the solution does not depend continuously on the data. The problem solved by two different methods, and for both cases we stabilize the computations by replacing the time derivative in the heat equation by a bounded operator. The first one, a spectral method based on finite Fourier space is illustrated to supply an analytical approach for approximating the time derivative. In order to get a better accuracy in the numerical computation, we use cubic spline function for approximating the time derivative in the least squares sense.</p><p>The inverse problem we want to solve, by using Cauchy data, is a nonlinear heat conduction problem in one space dimension. Since the temperature data u = g(t) is recorded, e.g. by a thermocouple, it usually contains some perturbation in the data. Thus the solution can be severely ill-posed if the Cauchy data become very noisy. Two experiments are presented to test the proposed approach.</p>
16

Numerical Solution of a Nonlinear Inverse Heat Conduction Problem

Hussain, Muhammad Anwar January 2010 (has links)
The inverse heat conduction problem also frequently referred as the sideways heat equation, in short SHE, is considered as a mathematical model for a real application, where it is desirable for someone to determine the temperature on the surface of a body. Since the surface itself is inaccessible for measurements, one is restricted to use temperature data from the interior measurements. From a  mathematical point of view, the entire situation leads to a non-characteristic Cauchy problem, where by using recorded temperature one can solve a well-posed nonlinear problem in the finite region for computing heat flux, and consequently obtain the Cauchy data [u, ux]. Further by using these data and by performing an appropriate method, e.g. a space marching method, one can eventually achieve the desired temperature at x = 0. The problem is severely ill-posed in the sense that the solution does not depend continuously on the data. The problem solved by two different methods, and for both cases we stabilize the computations by replacing the time derivative in the heat equation by a bounded operator. The first one, a spectral method based on finite Fourier space is illustrated to supply an analytical approach for approximating the time derivative. In order to get a better accuracy in the numerical computation, we use cubic spline function for approximating the time derivative in the least squares sense. The inverse problem we want to solve, by using Cauchy data, is a nonlinear heat conduction problem in one space dimension. Since the temperature data u = g(t) is recorded, e.g. by a thermocouple, it usually contains some perturbation in the data. Thus the solution can be severely ill-posed if the Cauchy data become very noisy. Two experiments are presented to test the proposed approach.
17

Regularizace založená na metodách Krylovových podprostorů / Regularization based on Krylov subspace iterations

Kovtun, Viktor January 2013 (has links)
No description available.
18

Regularizační metody založené na metodách nejmenších čtverců / Regularizační metody založené na metodách nejmenších čtverců

Michenková, Marie January 2013 (has links)
Title: Regularization Techniques Based on the Least Squares Method Author: Marie Michenková Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D. Abstract: In this thesis we consider a linear inverse problem Ax ≈ b, where A is a linear operator with smoothing property and b represents an observation vector polluted by unknown noise. It was shown in [Hnětynková, Plešinger, Strakoš, 2009] that high-frequency noise reveals during the Golub-Kahan iterative bidiagonalization in the left bidiagonalization vectors. We propose a method that identifies the iteration with maximal noise revealing and reduces a portion of high-frequency noise in the data by subtracting the corresponding (properly scaled) left bidiagonalization vector from b. This method is tested for different types of noise. Further, Hnětynková, Plešinger, and Strakoš provided an estimator of the noise level in the data. We propose a modification of this estimator based on the knowledge of the point of noise revealing. Keywords: ill-posed problems, regularization, Golub-Kahan iterative bidiagonalization, noise revealing, noise estimate, denoising 1
19

Numerical Methods for the Solution of Linear Ill-posed Problems

Alqahtani, Abdulaziz Mohammed M 28 November 2022 (has links)
No description available.
20

Numerical solutions to some ill-posed problems

Hoang, Nguyen Si January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Alexander G. Ramm / Several methods for a stable solution to the equation $F(u)=f$ have been developed. Here $F:H\to H$ is an operator in a Hilbert space $H$, and we assume that noisy data $f_\delta$, $\|f_\delta-f\|\le \delta$, are given in place of the exact data $f$. When $F$ is a linear bounded operator, two versions of the Dynamical Systems Method (DSM) with stopping rules of Discrepancy Principle type are proposed and justified mathematically. When $F$ is a non-linear monotone operator, various versions of the DSM are studied. A Discrepancy Principle for solving the equation is formulated and justified. Several versions of the DSM for solving the equation are formulated. These methods consist of a Newton-type method, a gradient-type method, and a simple iteration method. A priori and a posteriori choices of stopping rules for these methods are proposed and justified. Convergence of the solutions, obtained by these methods, to the minimal norm solution to the equation $F(u)=f$ is proved. Iterative schemes with a posteriori choices of stopping rule corresponding to the proposed DSM are formulated. Convergence of these iterative schemes to a solution to the equation $F(u)=f$ is proved. This dissertation consists of six chapters which are based on joint papers by the author and his advisor Prof. Alexander G. Ramm. These papers are published in different journals. The first two chapters deal with equations with linear and bounded operators and the last four chapters deal with non-linear equations with monotone operators.

Page generated in 0.033 seconds