Spelling suggestions: "subject:"apositional finite element"" "subject:"depositional finite element""
1 |
Análise não-linear geométrica de músculos esqueléticos via Método dos Elementos Finitos posicional / Geometrical nonlinear analysis of skeletal muscles via positional Finite Element MethodQuintero Ramírez, Carolina 04 October 2018 (has links)
A simulação computacional em biomecânica permite analisar o comportamento dos movimentos do corpo humano, diminuindo, e inclusive evitando ensaios experimentais invasivos. A locomoção humana resulta das forças desenvolvidas pelos músculos esqueléticos. Os mecanismos que produzem essas forças ainda são um tema de investigação aberto. O pouco entendimento desse fenômeno tem levado a subestimar propriedades importantes nos modelos mecânicos, as quais são essenciais para a simulação do comportamento do músculo. O objetivo desta tese foi desenvolver um código computacional que permita obter de maneira precisa e exata, a representação numérica do comportamento mecânico dos músculos esqueléticos. O código visa compilar diversas pesquisas numéricas de tal forma que a simulação possa considerar os fenômenos essenciais no comportamento mecânico do músculo e posteriormente avaliar sua influência na geração de força muscular. A formulação utilizada é baseada no Método dos Elementos Finitos (MEF), que é escrito em função das posições nodais. Os músculos esqueléticos foram discretizados por elementos planos e sólidos e uma análise não linear geométrica foi realizada. O programa considera fibras longas colocadas dentro de um domínio contínuo (passivo) sem adicionar graus de liberdade ao sistema). Um modelo transversalmente isotrópico, hiperelástico quase incompressível foi utilizado para simular o tecido muscular. A energia livre de Helmholtz foi usada para modelar o comportamento muscular ativo e passivo do músculo. Os resultados da pesquisa mostram que o código computacional é adequado para representar um modelo hiperelástico quase incompreensível no modelo transversalmente isotrópico. Permitindo considerar o músculo esquelético em duas partes distintas: intramuscular (matriz) e extracelular (fibras) utilizando a energia livre de Helmholtz e com ativação uniaxial, tanto em modelos estáticos como dinâmicos não lineares. Os resultados numéricos demonstraram que o algoritmo implementado é adequado para realizar análises não lineares geométricas de músculos esqueléticos via MEF. A condição de incompressibilidade foi comprovada nos problemas com materiais hiperelásticos. Também, foi demostrada a necessidade de realizar uma análise de convergência para as fibras. Finalmente, foi notada a complexidade na construção e na análise estrutural dos músculos esqueléticos, sendo necessário continuar desenvolvendo estratégias numéricas para maior aprofundamento. / Computational Modeling in Biomechanics allows analyzing of human body\'s movements, decreasing and some cases avoiding invasive experimental tests. The human locomotion is the result of forces developed by skeletal muscles. The mechanisms that produce this force are still an open research topic. The little knowledge of this phenomenon has led to underestimating important properties in mechanical models. The goal of this thesis was developed a computer code to obtain, in a precise and exact manner, the numerical representation of the mechanical behavior of skeletal muscles. The code aims to compile several numerical research, such that the simulation can consider the essential phenomena in mechanical behavior and then evaluate their influence in the muscle strength development. The used formulation is based on the Finite Element Method (FEM), which is written as a function of nodal positions. The skeletal muscles were discretized by plane and solid elements, and a geometrically nonlinear analysis was performed. The program considers long fibers placed inside a continuum domain (passive) without adding degrees of freedom to the system. A transversely isotropic model almost incompressible hyperelastic model was used to simulate the muscle tissue. The Helmholtz free energy was used to model the active and passive muscle behavior of muscle. The findings from the research indicate that the computer code is adequate to represent a transversely isotropic model almost incompressible hyperelastic model. The code allows skeletal muscle to be considered in two parts: intramuscular (matrix) and extracellular (fibers) using the Helmholtz free energy and with uniaxial activation, in nonlinear statical and dynamical models. The results support the model implemented for nonlinear geometrical analyzes of skeletal muscle using FEM. The almost incompressibility condition was tested in problems with hyperelastic materials. Also, numerical simulations confirm that a convergence analyzes for fibers is always required. Finally, it was noted the complexity in the construction and the structural analyzes of skeletal muscles, being necessary to continue developing numerical strategies for further deepening.
|
2 |
Ligações deslizantes para análise dinâmica não linear geométrica de estruturas e mecanismos tridimensionais pelo método dos elementos finitos posicional / Sliding connections for the geometrical nonlinear dynamical analysis of three-dimensional structures and mechanisms by the positional finite element methodSiqueira, Tiago Morkis 22 February 2019 (has links)
Este estudo trata do desenvolvimento de uma formulação matemática para ligações deslizantes aplicada à análise dinâmica não linear geométrica de estruturas e mecanismos tridimensionais conjuntamente à sua implementação computacional. Esses tipos de ligações possuem diversas aplicações nas indústrias aeroespacial, mecânica e civil sendo de interesse prático na simulação de, por exemplo: antenas de satélite, braços robóticos e guindastes; estruturas civis aporticadas, como estruturas pré-moldadas; e o acoplamento veicular móvel em pontes de geometria qualquer. Para a introdução das ligações deslizantes nos elementos finitos de pórtico plano, pórtico espacial e de casca são empregados os métodos dos multiplicadores de Lagrange, Lagrangeano aumentado e função de penalização como forma de imposição das restrições cinemáticas das juntas. Aspectos como rugosidade e dissipação por atrito na trajetória de deslizamento das ligações são considerados de forma a complementar o modelo numérico. Conexões rotacionais entre os elementos finitos empregados são também consideradas. Adicionalmente, uma formulação para atuadores flexíveis é desenvolvida de forma a introduzir movimentação aos corpos. Para simulação do comportamento dos sólidos emprega-se uma formulação do método dos elementos finitos em uma versão Lagrangeana total baseada em posições. Utiliza-se a relação constitutiva de Saint-Venant-Kirchhoff para caracterização dos materiais. Estuda-se a integração temporal das equações não lineares do movimento com restrições através dos métodos de Newmark e α-generalizado e a solução do sistema não linear é obtida pelo método de Newton-Raphson. Diversos exemplos são apresentados para verificação das formulações propostas. / This study deals with the development of a mathematical formulation for sliding connections applied to the geometrical nonlinear dynamical analysis of three-dimensional structures and mechanisms along with its computational implementation. These kinds of connections have several applications in aerospace, mechanical and civil industries when simulating, e.g.: satellite antennas, robotic arms and cranes; frame like civil structures, such precast structures; and the coupling between moving vehicles and bridges of any geometry. For the introduction of sliding connections in plane frames, spatial frames and shell finite elements the Lagrange multipliers, augmented Lagrangian and penalty function methods are employed as to enforce the joints kinematic constraints. Aspects such as roughness and friction dissipation on the connections sliding path are considered as to complement the numerical model. Rotational connections between the employed finite elements are also considered. In addition, a formulation for flexible actuators is developed to introduce motion to the bodies. In order to simulate the behaviour of solids, a total Lagrangian finite element method formulation based on positions is employed. The Saint-Venant-Kirchhoff constitutive relation is used to characterize the materials. The time integration of the constrained nonlinear equations of motion is studied by the Newmark and generalized-α methods and the solution of the nonlinear system is obtained by the Newton-Raphson method. Several examples are presented to verify the proposed formulations.
|
3 |
Análise da influência do campo higrométrico sobre a reação álcali-agregado / Analysis of the higrometric\'s field influence on the alkali-aggregate reactionSalomão, Rafael Corrêa 10 April 2017 (has links)
A reação álcali-sílica é uma patologia de origem química que ocorre em estruturas de concreto. A partir desta reação há a formação de um gel de álcali-sílica que em contato com a água provoca expansão e deformação da estrutura. Esta patologia traz muitos transtornos e prejuízos, principalmente em obras que estão em contato direto com a água (barragens, pontes, piers, etc) e a possibilidade de prever o comportamento e deformações em uma estrutura desse porte é de grande valia. Neste trabalho é feita a modelagem da percolação d\'água em meio poroso por meio do método dos elementos finitos, sem movimentação de malha e fazendo uso de função Heaviside contínua para a percolação. A modelagem da reação álcali-sílica é feita por meio de um modelo paramétrico, com alteração para contemplar regimes não uniformes de umidade e sua interferência na taxa de expansão. A modelagem do campo mecânico é feita pelo Método dos Elementos Finitos Posicional. / The alkali-silica reaction (ASR) is a pathology that occurs in concrete structures. Such pathology creates an alkali-silica gel that when in contact to water promotes expansion and strain on a affected structure. Most buildings that are susceptible to this fenomena are the ones in contact with water, such as dams, piers and bridges. The possibility to predict the ASR behavior and total strain developed would be helpful. In this work, finite element method with fixed mesh is employed to model seepage in a porous media. Also, it\'s used a Heaviside function for the percolation coefficient. The modeling of the alkali-silica reaction is done by a parametric model, modified to non-uniform humidity conditions and it\'s interference on the expansion rate. The modeling of the mechanical field is done by the Positional Finite Element method.
|
4 |
Estudo e desenvolvimento de código computacional para análise de impacto entre estruturas levando em consideração efeitos térmicos / Study and development of computational code to analyze impact in structures considering thermal effectsCarrazedo, Rogério 19 January 2009 (has links)
Ao se estudar problemas de impacto de estruturas deformáveis, a consideração dos efeitos térmicos se faz muito importante, pois além de se observar a transformação de energia mecânica em calor pode-se considerar, ao longo do processo de análise, as mudanças das propriedades mecânicas do material envolvido devido ao aquecimento do meio. Neste sentido, o objetivo principal deste trabalho é o desenvolvimento de uma formulação termodinamicamente consistente e sua implementação computacional, baseada no potencial de energia livre de Helmholtz e na primeira e segunda leis da termodinâmica, para se analisar, via elementos finitos, o impacto entre estruturas com comportamento termo-elástico e termo-plástico. O problema mecânico será tratado com formulação posicional desenvolvida em projetos de pesquisa anteriores e que podem ser classificados como Lagrangeano total com cinemática exata. Para a modelagem do impacto utilizar-se-á a técnica do multiplicador de Lagrange associada à teoria potencial para previsão do impacto, técnica de retorno geometricamente definida e algoritmo de integração temporal de Newmark adequadamente adaptado para problemas gerais de impacto. / It becomes quite important study the thermal effects when considering impact in structures, because besides the mechanical energy changing into heat, one may consider the changes in the material properties due overheating. In this sense, the main goal of this work is develop a thermodynamic formulation and its implementation, based in the Helmholtz free-energy and in the first and second law of thermodynamics, to analyze structures under impact. The mechanical problem will be solved by a positional finite element application developed in past researches and it can be classified as a total Lagrangean with exact kinematics. In order to consider the impact, the Lagrangean multiplier will be associated to the potential theory of impact prevision, technique geometrically defined and an adapted technique based on the time integration of Newmark, modified to impact problems.
|
5 |
Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes / Geometrical nonlinear dynamical analysis of plane frame structures and mechanisms with sliding jointsSiqueira, Tiago Morkis 26 February 2016 (has links)
Desenvolve-se uma formulação lagrangeana total do método dos elementos finitos para análise dinâmica de estruturas e mecanismos reticulados planos contendo ligações deslizantes sujeitas a grandes deslocamentos e rotações. Estas são introduzidas ao sistema mecânico na forma de juntas prismáticas e cilíndricas por meio do método dos multiplicadores de Lagrange, permitindo sua utilização na simulação de diversos tipos de estruturas e mecanismos. Também são consideradas rótulas entre as barras, estas introduzidas por meio da compatibilidade cinemática dos graus de liberdade dos nós comuns. A formulação do método dos elementos finitos adotada utiliza como parâmetros nodais as posições e os giros de modo desacoplado. Assim, pode-se utilizar a cinemática exata para barras de Reissner na análise de deslocamentos e giros finitos da estrutura. Adota-se o modelo constitutivo de Saint-Venant-Kirchhoff que relaciona a medida de deformação objetiva de Green-Lagrange com o tensor de tensões de Piola-Kirchhoff de segunda espécie. O equilíbrio dinâmico do sistema é obtido pelo princípio da energia total estacionária e a solução do sistema não linear de equações resultante é obtida pelo método de Newton-Raphson. A integração temporal é realizada pelo método de Newmark. São apresentados diversos exemplos para validação da formulação desenvolvida, os quais são comparados com soluções analíticas de modo a evidenciar as possibilidades de aplicação da formulação proposta. / A total lagrangian finite element method formulation is developed for the dynamic analysis of plane frame structures and mechanisms containing sliding joints that undergoes large displacements and rotations. Those connections are introduced in the mechanical system as prismatic and cylindrical joints by the method of Lagrange multipliers, allowing its use on the simulation of several types of structures and mechanisms. Hinges between bars are also considered by kinematic compatibility of the degrees of freedom on the common node. The adopted finite element formulation uses as nodal parameters uncoupled positions and angles. Therefore, Reissner exact kinematics for bars can be utilized for structural finite deformation. The Saint-Venant-Kirchhoff constitutive model, which relates the objective Green-Lagrange strain measure with the second Piola-Kirchhoff stress tensor, is adopted. The principle of stationary total energy is used to obtain the dynamic nonlinear equilibrium of the system and the solution of the resulting nonlinear system of equations is done by the Newton-Raphson method. The Newmark method is adopted for time integration. Several examples are presented for the validation of the developed formulation, and those are compared with analytical solutions in order to clarify the possibilities of application of the proposed formulation.
|
6 |
Análise dinâmica não linear geométrica de estruturas e mecanismos reticulados planos com ligações deslizantes / Geometrical nonlinear dynamical analysis of plane frame structures and mechanisms with sliding jointsTiago Morkis Siqueira 26 February 2016 (has links)
Desenvolve-se uma formulação lagrangeana total do método dos elementos finitos para análise dinâmica de estruturas e mecanismos reticulados planos contendo ligações deslizantes sujeitas a grandes deslocamentos e rotações. Estas são introduzidas ao sistema mecânico na forma de juntas prismáticas e cilíndricas por meio do método dos multiplicadores de Lagrange, permitindo sua utilização na simulação de diversos tipos de estruturas e mecanismos. Também são consideradas rótulas entre as barras, estas introduzidas por meio da compatibilidade cinemática dos graus de liberdade dos nós comuns. A formulação do método dos elementos finitos adotada utiliza como parâmetros nodais as posições e os giros de modo desacoplado. Assim, pode-se utilizar a cinemática exata para barras de Reissner na análise de deslocamentos e giros finitos da estrutura. Adota-se o modelo constitutivo de Saint-Venant-Kirchhoff que relaciona a medida de deformação objetiva de Green-Lagrange com o tensor de tensões de Piola-Kirchhoff de segunda espécie. O equilíbrio dinâmico do sistema é obtido pelo princípio da energia total estacionária e a solução do sistema não linear de equações resultante é obtida pelo método de Newton-Raphson. A integração temporal é realizada pelo método de Newmark. São apresentados diversos exemplos para validação da formulação desenvolvida, os quais são comparados com soluções analíticas de modo a evidenciar as possibilidades de aplicação da formulação proposta. / A total lagrangian finite element method formulation is developed for the dynamic analysis of plane frame structures and mechanisms containing sliding joints that undergoes large displacements and rotations. Those connections are introduced in the mechanical system as prismatic and cylindrical joints by the method of Lagrange multipliers, allowing its use on the simulation of several types of structures and mechanisms. Hinges between bars are also considered by kinematic compatibility of the degrees of freedom on the common node. The adopted finite element formulation uses as nodal parameters uncoupled positions and angles. Therefore, Reissner exact kinematics for bars can be utilized for structural finite deformation. The Saint-Venant-Kirchhoff constitutive model, which relates the objective Green-Lagrange strain measure with the second Piola-Kirchhoff stress tensor, is adopted. The principle of stationary total energy is used to obtain the dynamic nonlinear equilibrium of the system and the solution of the resulting nonlinear system of equations is done by the Newton-Raphson method. The Newmark method is adopted for time integration. Several examples are presented for the validation of the developed formulation, and those are compared with analytical solutions in order to clarify the possibilities of application of the proposed formulation.
|
7 |
Estudo e desenvolvimento de código computacional para análise de impacto entre estruturas levando em consideração efeitos térmicos / Study and development of computational code to analyze impact in structures considering thermal effectsRogério Carrazedo 19 January 2009 (has links)
Ao se estudar problemas de impacto de estruturas deformáveis, a consideração dos efeitos térmicos se faz muito importante, pois além de se observar a transformação de energia mecânica em calor pode-se considerar, ao longo do processo de análise, as mudanças das propriedades mecânicas do material envolvido devido ao aquecimento do meio. Neste sentido, o objetivo principal deste trabalho é o desenvolvimento de uma formulação termodinamicamente consistente e sua implementação computacional, baseada no potencial de energia livre de Helmholtz e na primeira e segunda leis da termodinâmica, para se analisar, via elementos finitos, o impacto entre estruturas com comportamento termo-elástico e termo-plástico. O problema mecânico será tratado com formulação posicional desenvolvida em projetos de pesquisa anteriores e que podem ser classificados como Lagrangeano total com cinemática exata. Para a modelagem do impacto utilizar-se-á a técnica do multiplicador de Lagrange associada à teoria potencial para previsão do impacto, técnica de retorno geometricamente definida e algoritmo de integração temporal de Newmark adequadamente adaptado para problemas gerais de impacto. / It becomes quite important study the thermal effects when considering impact in structures, because besides the mechanical energy changing into heat, one may consider the changes in the material properties due overheating. In this sense, the main goal of this work is develop a thermodynamic formulation and its implementation, based in the Helmholtz free-energy and in the first and second law of thermodynamics, to analyze structures under impact. The mechanical problem will be solved by a positional finite element application developed in past researches and it can be classified as a total Lagrangean with exact kinematics. In order to consider the impact, the Lagrangean multiplier will be associated to the potential theory of impact prevision, technique geometrically defined and an adapted technique based on the time integration of Newmark, modified to impact problems.
|
8 |
Análise da influência do campo higrométrico sobre a reação álcali-agregado / Analysis of the higrometric\'s field influence on the alkali-aggregate reactionRafael Corrêa Salomão 10 April 2017 (has links)
A reação álcali-sílica é uma patologia de origem química que ocorre em estruturas de concreto. A partir desta reação há a formação de um gel de álcali-sílica que em contato com a água provoca expansão e deformação da estrutura. Esta patologia traz muitos transtornos e prejuízos, principalmente em obras que estão em contato direto com a água (barragens, pontes, piers, etc) e a possibilidade de prever o comportamento e deformações em uma estrutura desse porte é de grande valia. Neste trabalho é feita a modelagem da percolação d\'água em meio poroso por meio do método dos elementos finitos, sem movimentação de malha e fazendo uso de função Heaviside contínua para a percolação. A modelagem da reação álcali-sílica é feita por meio de um modelo paramétrico, com alteração para contemplar regimes não uniformes de umidade e sua interferência na taxa de expansão. A modelagem do campo mecânico é feita pelo Método dos Elementos Finitos Posicional. / The alkali-silica reaction (ASR) is a pathology that occurs in concrete structures. Such pathology creates an alkali-silica gel that when in contact to water promotes expansion and strain on a affected structure. Most buildings that are susceptible to this fenomena are the ones in contact with water, such as dams, piers and bridges. The possibility to predict the ASR behavior and total strain developed would be helpful. In this work, finite element method with fixed mesh is employed to model seepage in a porous media. Also, it\'s used a Heaviside function for the percolation coefficient. The modeling of the alkali-silica reaction is done by a parametric model, modified to non-uniform humidity conditions and it\'s interference on the expansion rate. The modeling of the mechanical field is done by the Positional Finite Element method.
|
9 |
Formulação e implementação numérica para análise de estabilidade de perfis de parede fina via MEF posicional / Formulation and numerical implementation for stability analysis of thin-walled members by positional MEFSoares, Henrique Barbosa 14 March 2019 (has links)
No presente trabalho, desenvolve-se um programa computacional para análise de instabilidade de perfis de parede fina por meio do método dos elementos finitos (MEF), com discretização em elementos de casca. Para tal finalidade, utiliza-se uma formulação não-linear geométrica do MEF, com descrição lagrangeana total do equilíbrio, tendo posições nodais e vetores generalizados como variáveis fundamentais da formulação, possibilitando a adoção de lei constitutiva tridimensional completa. Dada a adoção de vetores generalizados ao invés de giros, surge o problema de não unicidade desses vetores nas regiões de encontro entre elementos não coplanares. Para contornar esse problema, desenvolvem-se algumas estratégias de acoplamento que são eficientes e que não comprometem o condicionamento do sistema resultante. Em seguida, introduz-se no programa uma estratégia, baseada na análise linear de instabilidade, que consiste na obtenção de autovalores e autovetores correspondendo, respectivamente, a cargas críticas e modos de instabilidade associados. É realizada uma extensão dessa estratégia para a incorporação da análise não-linear de instabilidade, possibilitando a determinação de pontos críticos ao longo da trajetória de equilíbrio de um ponto da estrutura. Desenvolve-se, também, uma interface gráfica para o programa, para a qual se implementam algoritmos para geração de malha de elementos finitos triangulares e quadrilaterais e se possibilita a aplicação de condições de contorno de forma simples. Por fim, apresentam-se exemplos para validar o código computacional desenvolvido e para explorar as potencialidades do mesmo. A partir desses exemplos, conclui-se que a estratégia proposta e a ferramenta computacional desenvolvida funcionam adequadamente, oferecendo como principal vantagem respostas em geral livres de travamento volumétrico quando comparadas aos resultados provenientes da formulação convencional do MEF, encontrados na literatura. / In the present work, a computational program is developed to perform instability analysis in thin-walled profiles employing the finite element method (FEM), using shell elements. For this purpose, a non-linear geometric formulation of FEM is adopted, with Total Lagrangean description of the equilibrium, having nodal positions and unconstrained vectors as fundamental variables of the formulation, instead of displacements and rotations, making possible the adoption of complete three-dimensional constitutive law. Given the adoption of generalized vectors instead of rotations, the problem arises of the vectors\' non-uniqueness in the regions of connection between non-coplanar shell elements. To overcome this problem, some coupling strategies are developed that are efficient and do not result in ill conditioning of the resulting system of equilibrium equations. Then, a strategy based on buckling analysis is considered in the program, which consists of obtaining eigenvalues and eigenvectors related, respectively, to critical loads and instability modes. An extension of this strategy is developed to consider the nonlinear analysis of instability, making possible to determine critical points along the equilibrium path of a point in the structure. A graphical interface is also developed for the program, for which algorithms are implemented for triangular and quadrilateral finite elements mesh generations and easy boundary conditions assignments. Finally, some examples are presented to validate the developments and to explore the potentialities of the computational tool obtained in the work. From the results, it is possible to conclude that the program works properly, offering as main advantage volumetric responses, in general, free of locking when compared to results using the conventional FEM formulation, as found in the literature.
|
10 |
Formulação de elemento finito posicional para modelagem numérica de pórticos planos constituídos por compósitos laminados: uma abordagem não linear geométrica baseada na teoria Layerwise / Positional finite element formulation for numerical modeling of frames made of laminated composites: a geometric nonlinear approach based on Layerwise theoryNogueira, Geovanne Viana 30 April 2015 (has links)
A análise de compósitos laminados apresenta grandes desafios, pois, diferentemente dos materiais isotrópicos homogêneos, os compósitos laminados são constituídos de materiais heterogêneos e anisotrópicos. Além disso, as distribuições de tensões interlaminares obtidas com as formulações convencionais são descontínuas e imprecisas. Sua melhoria, portanto, é imprescindível para buscar e modelar critérios de falha relacionados às estruturas formadas por compósitos laminados. Diante disso, este trabalho se concentrou no desenvolvimento e implementação computacional de um elemento finito posicional de pórtico plano laminado cuja cinemática é descrita ao longo da espessura do laminado de acordo com a teoria Layerwise. A formulação do elemento considera a não linearidade geométrica, originada pela ocorrência de grandes deslocamentos e rotações, e admite deformações moderadas, em função da lei constitutiva de Saint-Venant-Kirchhoff. O desenvolvimento deste trabalho se iniciou com uma preparação teórica sobre mecânica dos sólidos deformáveis e métodos numéricos para que fossem adquiridos os subsídios teóricos necessários ao desenvolvimento de códigos computacionais, à interpretação dos resultados e à tomada de decisões quando das análises numéricas. A formulação desenvolvida é Lagrangiana total com emprego do método dos elementos finitos baseado em posições. Inicialmente o elemento finito posicional de pórtico plano homogêneo é proposto, uma vez que sua cinemática possibilita uma expansão natural para o caso laminado. Os graus de liberdade são compostos por posições nodais e por vetores generalizados que representam o giro e a variação na altura da seção transversal. A eficiência do elemento é constatada através de análises realizadas em problemas de pórtico sujeitos a grandes deslocamentos e rotações. Os resultados obtidos apresentaram excelente concordância com soluções numéricas e analíticas disponíveis na literatura. Uma expansão natural da cinemática é empregada na formulação do elemento laminado. Os graus de liberdade do elemento são as posições nodais e as componentes de vetores generalizados associados às seções transversais de cada lâmina. Dessa forma, as lâminas têm liberdade para variação de espessura e giro independente das demais, mas com as posições compatibilizadas nas interfaces. Os resultados de análises numéricas realizadas em vários exemplos demonstram a eficiência da formulação proposta, pois as distribuições de deslocamentos e tensões ao longo da espessura do laminado apresentaram excelente concordância com as obtidas a partir de análises numéricas utilizando um elemento finito bidimensional em uma discretização bastante refinada. Os exemplos analisados contemplam problemas com seção laminada fina ou espessa. / The analysis of laminated composites presents challenges because, unlike homogeneous isotropic materials, the laminated composites are made up of heterogeneous and anisotropic materials. Moreover, the distribution of interlaminar stresses obtained with conventional formulations are discontinuous and inaccurate. His improvement is therefore essential to check and modeling failure criteria related to structures formed by laminates. Thus, this work focused on developing and computational implementation of a positional finite element of laminated plane frame whose kinematics is described throughout the thickness of the laminate according to Layerwise theory. The formulation element considers the geometric nonlinearity, caused by the occurrence of large displacements and rotations, and admits moderate deformation, in the constitutive law function of Saint-Venant-Kirchhoff. The development of this work began with a theoretical preparation on mechanics of deformable solids and numerical methods for the acquired of the theoretical support needed for the development of computational codes, interpretation of results and decision-making when of the numerical analyzes. The developed formulation is total Lagrangian with use of the finite element method based on positions. Initially the positional finite element of homogeneous plane frame is proposed, since their kinematic enables a natural expansion for the laminate case. The degrees of freedom are composed of nodal positions and generalized vectors representing the spin and the variation in the height of the cross section. The efficiency of the element is verified through analyzes performed in frame problems subject to large displacements and rotations. The results showed excellent agreement with numerical and analytical solutions available in the literature. A natural expansion of the kinematics is used in the formulation of the laminate element. The degrees of freedom of the element are the nodal positions and components of the generalized vectors associated to cross-sections of each lamina. Thus, the laminas are free for the thickness variation and for independent spin, but with the positions matched in the interfaces. The results of numerical analysis performed in various examples show the effectiveness of the proposed formulation, since the distributions of displacements and stresses through the thickness of the laminate agreed well with those obtained from numerical analysis using a discretization with two-dimensional finite elements in a very refined. The examples discussed include problems with thin or thick laminated section.
|
Page generated in 0.1566 seconds