• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 49
  • 49
  • 17
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Aide au diagnostic de la maladie d’Alzheimer par des techniques de sélection d’attributs pertinents dans des images cérébrales fonctionnelles obtenues par tomographie par émission de positons au 18FDG / Computer-aided diagnosis technique for brain pet images classification in the case of Alzheimer disease (AD)

Garali, Imène 07 December 2015 (has links)
Dans le cadre de cette thèse, nous nous sommes intéressés à l’étude de l’apport d’une aide assistée par ordinateur au diagnostic de certaines maladies dégénératives du cerveau, en explorant les images de tomographie par émission de positons, par des techniques de traitement d’image et d’analyse statistique.Nous nous sommes intéressés à la représentation corticale des 116 régions anatomiques, en associant à chacune d’elles un vecteur d’attribut issu du calcul des 4 premiers moments des intensités de voxels, et en y incluant par ailleurs l’entropie. Sur la base de l’aire de courbes ROC, nous avons établi qualitativement la pertinence de chacune des régions anatomiques, en fonction du nombre de paramètres du vecteur d’attribut qui lui était associé, pour séparer le groupe des sujets sains de celui des sujets atteints de la maladie d’Alzheimer. Dans notre étude nous avons proposé une nouvelle approche de sélection de régions les plus pertinentes, nommée "combination matrix", en se basant sur un système combinatoire. Chaque région est caractérisée par les différentes combinaisons de son vecteur d’attribut. L’introduction des régions les plus pertinentes(en terme de pouvoir de séparation des sujets) dans le classificateur supervisé SVM nous a permis d’obtenir, malgré la réduction de dimension opérée, un taux de classification meilleur que celui obtenu en utilisant l’ensemble des régions. / Our research focuses on presenting a novel computer-aided diagnosis technique for brain Positrons Emission Tomography (PET) images. It processes and analyzes quantitatively these images, in order to better characterize and extract meaningful information for medical diagnosis. Our contribution is to present a new method of classifying brain 18 FDG PET images. Brain images are first segmented into 116 Regions Of Interest (ROI) using an atlas. After computing some statistical features (mean, standarddeviation, skewness, kurtosis and entropy) on these regions’ histogram, we defined a Separation Power Factor (SPF) associated to each region. This factor quantifies the ability of each region to separate neurodegenerative diseases like Alzheimer disease from Healthy Control (HC) brain images. A novel region-based approach is developed to classify brain 18FDG-PET images. The motivation of this work is to identify the best regional features for separating HC from AD patients, in order to reduce the number of features required to achieve an acceptable classification result while reducing computational time required for the classification task.
32

Improved quantification in small animal PET/MR

Evans, Eleanor January 2015 (has links)
In translational medicine, complementary functional and morphological imaging techniques are used extensively to observe physiological processes in vivo and to assess structural changes as a result of disease progression. The combination of magnetic resonance imaging (MRI) and positron emission tomography (PET) provides excellent soft tissue contrast from MRI with exceptional sensitivity and specificity from PET. This thesis explores the use of sequentially acquired PET and MR images to improve the quantification of small animal PET data. The primary focus was to improve image-based estimates of the arterial input function (AIF), which defines the amount of PET tracer within blood plasma over time. The AIF is required to produce physiological parameters quantifying key processes such as metabolism or perfusion from dynamic PET images. The gold standard for AIF measurement, however, requires serial blood sampling over the course of a PET scan, which is invasive in rat studies but prohibitive in mice due to small total blood volumes. To address this issue, the geometric transfer matrix (GTM) and recovery coefficient (RC) techniques were applied using anatomical MR images to enable the extraction of partial volume corrected image based AIFs from mouse PET images. A non-invasive AIF extraction method was also developed for rats, beginning with the optimization of an automated voxel selection algorithm to assist in extracting MR contrast agent signal time courses from dynamic susceptibility contrast (DSC) MRI data. This procedure was then combined with dynamic contrast enhanced (DCE) MRI to track a combined injection of Gadolinium-based contrast agent and PET tracer through the rat brain. By comparison with gold standard tracer blood sample data, it was found that normalized MRI-based AIFs could be successfully converted into PET tracer AIFs in the first pass phase when fitted with gamma variate functions. Finally, a MR image segmentation method used to provide PET attenuation correction in mice was validated using the Cambridge split magnet PET/MR scanner?s transmission scanning capabilities. This work recommends that contributions from MR hardware in the PET field of view must be accounted forto gain accurate estimates of tracer uptake and standard uptake values (SUVs). This thesis concludes that small animal MR data taken in the same imaging session can provide non-invasive methods to improve PET image quantification, giving added value to combined PET/MR studies over those conducted using PET alone.
33

Biologische Evaluierung von 18F-markierten Aminosäure-Tracern für Tumor- und neurologische Bildgebung

Krämer, Maximiliane-Felicia 25 November 2021 (has links)
EINLEITUNG: In der Diagnostik mittels Positronen-Emissions-Tomographie (PET) liegt ein großes Potential hinsichtlich Diagnostik und Therapie einer Vielzahl von Erkrankungen. Gerade das radioaktive Isotop 18F eignet sich aufgrund hervorragender Zerfallseigenschaften besonders gut für die Entwicklung neuer Radiotracer für den klinischen Einsatz. Dabei haben sich Aminosäure (AS)-Tracer besonders bei der Darstellung von zerebralen Tumoren bewährt. Dies ist insbesondere auf eine erhöhte AS- Transportrate sowie eine erhöhte Proteinbiosyntheserate im Tumorgewebe zurückzuführen. ZIELE DER UNTERSUCHUNGEN: Eine große Hürde in der PET-Diagnostik besteht in der Entwicklung neuer Tracer, welche sich für den klinischen Einsatz eignen. Denn auch die Qualität von PET-Untersuchungen hängt stark von der Entwicklung selektiver PET-Tracer ab. Ziel dieser Studie war es daher, die neu entwickelten Phenylalanin (Phe)-Tracer zunächst in vitro zu evaluieren, bevor die Tracer bei erfolgsversprechenden Ergebnissen in verschiedenen subkutanen sowie orthotopen Tumormodellen in vivo eingesetzt wurden. Ein besonderes Augenmerk wurde auf die Entwicklung neuer Tracer für die Darstellung zerebraler Glioblastome gelegt, da diese nach wie vor meist zu einem späten Erkrankungszeitpunkt diagnostiziert werden und mit einer hohen Mortalität einhergehen. TIERE, MATERIAL UND METHODEN: Insgesamt 5 Tracer – 3-L-[18F]FPhe, 3-D-[18F]FPhe sowie α-Methyl-2-,3- und 4-[18F]FPhe – wurden hinsichtlich ihrer Bildeigenschaften im PET evaluiert. Als Referenztracer wurde jeweils der bereits etablierte Tracer [18F]Fluoroethyltyrosin ([18F]FET) eingesetzt. Zunächst wurde die prinzipielle Eignung der Tracer anhand von in vitro Zellaufnahmeversuchen an verschiedenen humanen Tumorzelllinien (MCF-7, PC-3 und U87 MG) evaluiert. Erste in vivo Versuche zur Biodistribution wurden an gesunden weiblichen und männlichen Ratten (Long Evans, je n=6) durchgeführt. Im Anschluss erfolgten Untersuchungen an einem subkutanen Tumormausmodell (männliche SCID-Mäuse, n=18) sowie einem orthotopen Gehirntumormodell an der Ratte (männliche RNU-Ratten, n=24). ERGEBNISSE: Die in vitro Traceraufnahme der evaluierten Phe-Tracer war höher oder ähnlich im Vergleich zu [18F]FET. Vor allem das AS-Transportsystem L sowie ASC waren am Transport der AS-Tracer beteiligt. Eine Proteininkorporation konnte für den Tracer 3-L-[18F]FPhe nachgewiesen werden. Insgesamt zeigten alle Tracer eine hohe metabolische Stabilität in gesunden Tieren in vivo. Die höchste Gehirnaufnahme wurde für die Tracer 3-L-[18F]FPhe, 3-D-[18F]FPhe sowie αM-3-[18F]FPhe beobachtet. Im subkutanen Tumormodell wiesen alle Tracer ähnliche Tumorbildgebungseigenschaften auf. Lediglich αM-2-[18F]FPhe zeigte in den MCF-7 Tumoren signifikant niedrigere Tumorwerte im Vergleich zu [18F]FET. Auch im orthotopen Modell war zu beobachten, dass sich die neuen Phe-Tracer nur geringgradig von [18F]FET unterschieden. Hier zeigten sich in den ersten Minuten post injectionem (p.i.) signifikant höhere Traceraufnahmen für 3-L-[18F]FPhe sowie αM-3-[18F]FPhe im orthotopen Glioblastom. Das Tumor/Gehirn-Verhältnis zeigte jedoch keine signifikanten Unterschiede hinsichtlich der untersuchten Tracer. SCHLUSSFOLGERUNGEN: Insgesamt wiesen alle fünf evaluierten Tracer gute Tumorbildgebungseigenschaften auf. Die Enantiomere 3-L-[18F]FPhe und 3-D-[18F]FPhe unterschieden sich erstaunlicherweise kaum in ihrem biologischen Verhalten. Insbesondere für die Tracer 3-L-[18F]FPhe sowie αM-3-[18F]FPhe war eine hohe Tumortraceraufnahme zu beobachten. Alle Tracer ermöglichten eine sensitive Detektion orthotoper Glioblastome in der Ratte. Die signifikant höhere Tumoraufnahme von 3-L-[18F]FPhe sowie αM-3-[18F]FPhe in den ersten Minuten p.i. könnte die Scanzeiten von Gehirntumorpatienten verkürzen. Eine erhöhte Proteininkorporation zeigte keinen signifikanten Vorteil für 3-L-[18F]FPhe gegenüber [18F]FET. Insgesamt war kein klarer Vorteil gegenüber dem etablierten AS-Tracer [18F]FET zu sehen.:1. EINLEITUNG 2. LITERATURÜBERSICHT 2.1 Prinzip der Positronen-Emissions-Tomographie 2.2 Klinische Bedeutung von Phenylalanin. 2.3 Vor- und Nachteile Aminosäure-basierter PET-Tracer 2.4 Wichtige eingesetzte PET-Tracer in der zerebralen Tumorbildgebung 2.4.1 L-[methyl-11C]methionin ([11C]MET) 2.4.2 [11C]-α-Methyl-L-Tryptophan ([11C]AMT) 2.4.3 6-[18F]Fluor-L-3,4-dihydroxyphenylalanin ([18F]FDOPA) 2.4.4 [18F]Fluorethyltyrosin ([18F]FET) 2.5 Blut-Hirn-Schranke: Aufbau und tierartliche Unterschiede 2.5.1 Aufbau der Blut-Hirn-Schranke 2.5.2 Transport über die Blut-Hirn-Schranke 2.5.3 Tierartliche Unterschiede 2.5.4 Einfluss von Krankheiten auf die Blut-Hirn-Schranke 2.6 Aminosäurentransporter: Charakterisierung und Vorkommen in verschiedenen Tumorarten 2.6.1 Aminosäurentransportsystem L 2.6.1.1 LAT1/SLC7A5-Transporter 2.6.2 Aminosäurentransportsystem ASC 2.6.2.1 ASCT2/SLC1A5-Transporter 2.6.3 Aminosäurentransportsystem A 3. TIERE, MATERIAL UND METHODEN 3.1 Haltung der Versuchstiere 3.1.1 Haltung der Versuchsratten 3.1.2 Haltung der Versuchsmäuse 3.2 Anästhesie der Versuchstiere 3.3 Verwendete Materialien und Geräte 3.4 Verwendete Agenzien 3.5 Herstellung der 18F-markierten Tracer 3.5.1 Physikalische Grundlagen 3.5.2 Herstellung des radioaktiven Isotops 18F 3.5.3 Aminosäuren-Tracer auf Phenylalanin-Basis 3.6 Verwendete Zelllinien 3.6.1 U87 MG Zelllinie (humanes Glioblastom) 3.6.2 MCF-7 Zelllinie (humanes Brustadenokarzinom) 3.6.3 PC-3 Zelllinie (humanes Prostataadenokarzinom) 3.7 Zellaufnahmeversuche in vitro 3.7.1 Zellkultivierung 3.7.2 Versuchsdurchführung der zellulären Tracer-Aufnahme 3.7.3 Versuchsdurchführung der kompetitiven Inhibitionsstudien 3.7.4 Versuchsdurchführung der Proteininkorporation 3.7.5 Messung der zellulären Tracer-Aufnahme 3.8 Biodistributionsstudien in der gesunden Ratte 3.8.1 Versuchstiere 3.8.2 Versuchsaufbau 3.9 Subkutanes Tumor-Xenograft-Modell der Maus 3.9.1 Versuchstiere 3.9.2 Verwendete Zelllinien 3.9.3 Versuchsaufbau 3.9.4 Diagnostische Verfahren 3.10 Orthotopes Tumor-Xenograft-Modell der Ratte 3.10.1 Versuchstiere 3.10.2 Verwendete Zelllinie 3.10.3 Versuchsaufbau 3.10.4 Diagnostische Verfahren 3.10.5 Transkardiale Perfusion und Gehirnentnahme nach Versuchsende 3.11 PET-Messungen 3.11.1 Rekonstruktion der PET-Bilder 3.11.2 Auswertung der PET-Bilder mit der Software VINCI 3.11.3 Biodistributionsstudien in der gesunden Ratte 3.11.4 Subkutanes Tumor-Xenograft-Modell der Maus 3.11.5 Orthotopes Tumor-Xenograft-Modell der Ratte 3.12 Statistische Auswertung 4. ERGEBNISSE 4.1 Zellaufnahmeversuche in vitro 4.1.1 Zelluläre Tracer-Aufnahme 4.1.2 Kompetitive Inhibitionsstudien 4.1.3 Proteininkorporation 4.2 Biodistributionsstudien in der gesunden Ratte 4.2.1 3-L-[18F]Fluorphenylalanin 4.2.2 3-D-[18F]Fluorphenylalanin 4.2.3 α-Methyl-2-[18F]Fluorphenylalanin 4.2.4 α-Methyl-3-[18F]Fluorphenylalanin 4.2.5 α-Methyl-4-[18F]Fluorphenylalanin 4.2.6 Vergleichende Auswertung 4.3 Subkutanes Tumor-Xenograft-Modell der Maus 4.3.1 Versuchsablauf und Gewichtsentwicklung 4.3.2 PET-Messungen MCF-7 Zelllinie 4.3.3 PET-Messungen PC-3 Zelllinie 4.3.4 Vergleichende Auswertung 4.3.5 Histologische Verfahren 4.4.1 Versuchsablauf und Gewichtsentwicklung 4.4.2 MRT- und PET-Messungen 4.4.3 Vergleichende Auswertung 4.4.4 Immunhistochemie 5. DISKUSSION 5.1 Zellaufnahmeversuche in vitro 5.2 Biodistributionsstudien in der gesunden Ratte 5.3 Subkutanes Tumor-Xenograft-Modell der Maus 5.4 Orthotopes Tumor-Xenograft-Modell der Ratte 5.5 Synopsis: Gegenüberstellung der untersuchten Tracer 5.6 Ausblick 6. ZUSAMMENFASSUNG 7. SUMMARY 8. REFERENZEN 8.1 Abbildungsverzeichnis 8.2 Tabellenverzeichnis 8.3 Formelverzeichnis 8.4 Literaturverzeichnis 9. ANHANG 9.1 Subkutanes Tumor-Xenograft-Modell der Maus 9.1.1 PET-Bilder und TACs 3-L-[18F]Fluorphenylalanin 9.1.2 PET-Bilder und TACs 3-D-[18F]Fluorphenylalanin 9.1.3 PET-Bilder und TACs α-Methyl-2-[18F]Fluorphenylalanin 9.1.4 PET-Bilder und TACs α-Methyl-3-[18F]Fluorphenylalanin 9.1.5 PET-Bilder und TACs α-Methyl-4-[18F]Fluorphenylalanin 9.1.6 PET-Bilder und TACs [18F]Fluorethyltyrosin 9.2 Orthotopes Tumor-Xenograft-Modell der Ratte 9.2.1 MRT-und PET-Bilder 3-L-[18F]Fluorphenylalanin 9.2.2 MRT-und PET-Bilder 3-D-[18F]Fluorphenylalanin 9.2.3 MRT-und PET-Bilder α-Methyl-3-[18F]Fluorphenylalanin 9.2.4 MRT-und PET-Bilder [18F]Fluorethyltyrosin 9.3 Durchführung der histologischen Verfahren 9.3.1 Hämatoxylin-Eosin-Färbung 9.3.2 Anti-LAT1(SLC7A5)-Färbung 9.3.3 Anti-ASCT2(SLC1A5)-Färbung 9.4 Statistische Auswertung 9.4.1 Zellaufnahmeversuche in vitro 9.4.2 Biodistributionsstudien in der gesunden Ratte 9.4.3 Subkutanes Tumor-Xenograft-Modell der Maus 9.4.4 Orthotopes Tumor-Xenograft-Modell der Ratte 10. DANKSAGUNG / INTRODUCTION: Positron emission tomography (PET) has gained great potential for the diagnosis and treatment of a wide range of diseases. The radioactive isotope 18F is particularly well suited for the development of new radiotracers for clinical use due to its excellent decay properties. Amino acids (AA) have proven particularly useful in the imaging of cerebral tumors due to an increased protein synthesis rate and AA transport rates in tumor tissue. AIMS OF THE STUDIES: A major difficulty in PET diagnostics is the development of new tracers which are suitable for clinical use. This is because the quality of PET imaging depends heavily on the development of selective PET tracers. The aim of the study was therefore to preclinically evaluate the newly developed phenylalanine (Phe) tracers. After principle suitability was seen in in vitro cellular experiments, further experiments were performed in subcutaneous as well as orthotopic tumor models in vivo. Particular attention has been paid to the development of new tracers imaging cerebral glioblastomas, as they are mostly still diagnosed late and are associated with high mortality. ANIMALS, MATERIAL AND METHODS: A total of 5 Phe-based tracers – 3-L-[18F]FPhe, 3-D-[18F]FPhe as well as α-Methyl-2-,3- and 4-[18F]FPhe – were evaluated with regard to their imaging properties in PET. The already established tracer [18F]fluoroethyltyrosine ([18F]FET) was used as reference tracer in each case. First, the principle suitability of the tracers was evaluated by in vitro cell uptake experiments on various human tumor cell lines (MCF-7, PC-3 and U87 MG). Next, in vivo biodistribution studies were carried out on healthy female and male rats (Long Evans, n=6). Subsequently, experiments with subcutaneous tumor bearing mice (male SCID mice, n=18) and an orthotopic brain tumor model in the rat (male RNU rats, n=24) were performed. RESULTS: The in vitro cellular uptake of the evaluated Phe-tracers was higher or similar compared to [18F]FET. Significant inhibition of cellular uptake was seen in blocking the AA transport systems L and ASC. Protein incorporation could be demonstrated for 3-L-[18F]FPhe. Overall, all tracers showed high in vivo metabolic stability in healthy animals. The highest brain uptake was observed for the tracers 3-L- [18F]FPhe, 3-D-[18F]FPhe and αM-3-[18F]FPhe. In the subcutaneous tumor model, all tracers showed similar tumor imaging properties. Only αM-2-[18F]FPhe showed significantly lower tumor levels in the MCF-7 tumors compared to [18F]FET. It was also observed in the orthotopic model that the new Phe- based tracers differed only slightly from [18F]FET. Significantly higher tracer uptakes for 3-L-[18F]FPhe as well as αM-3-[18F]FPhe were seen in the first minutes post injection (p.i.) in the orthotopic tumor. However, the tumor-to-brain-ratio showed no significant differences. CONCLUSION: All five tracers evaluated showed good tumor imaging properties. Surprisingly, the enantiomers 3-L- [18F]FPhe and 3-D-[18F]FPhe hardly differed in their biological behaviour. In particular, a high tumour tracer uptake was observed for the tracers 3-L-[18F]FPhe as well as αM-3-[18F]FPhe. All tracers enabled sensitive detection of orthotopic glioblastomas in the rat. The significantly higher tumor uptake of 3-L-[18F]FPhe and αM-3-[18F]FPhe in the first minutes p.i. could shorten the scan times of brain tumour patients. Increased protein incorporation showed no significant advantage for 3-L- [18F]FPhe over [18F]FET. In summary, no clear advantage was seen over the established AA tracer [18F]FET.:1. EINLEITUNG 2. LITERATURÜBERSICHT 2.1 Prinzip der Positronen-Emissions-Tomographie 2.2 Klinische Bedeutung von Phenylalanin. 2.3 Vor- und Nachteile Aminosäure-basierter PET-Tracer 2.4 Wichtige eingesetzte PET-Tracer in der zerebralen Tumorbildgebung 2.4.1 L-[methyl-11C]methionin ([11C]MET) 2.4.2 [11C]-α-Methyl-L-Tryptophan ([11C]AMT) 2.4.3 6-[18F]Fluor-L-3,4-dihydroxyphenylalanin ([18F]FDOPA) 2.4.4 [18F]Fluorethyltyrosin ([18F]FET) 2.5 Blut-Hirn-Schranke: Aufbau und tierartliche Unterschiede 2.5.1 Aufbau der Blut-Hirn-Schranke 2.5.2 Transport über die Blut-Hirn-Schranke 2.5.3 Tierartliche Unterschiede 2.5.4 Einfluss von Krankheiten auf die Blut-Hirn-Schranke 2.6 Aminosäurentransporter: Charakterisierung und Vorkommen in verschiedenen Tumorarten 2.6.1 Aminosäurentransportsystem L 2.6.1.1 LAT1/SLC7A5-Transporter 2.6.2 Aminosäurentransportsystem ASC 2.6.2.1 ASCT2/SLC1A5-Transporter 2.6.3 Aminosäurentransportsystem A 3. TIERE, MATERIAL UND METHODEN 3.1 Haltung der Versuchstiere 3.1.1 Haltung der Versuchsratten 3.1.2 Haltung der Versuchsmäuse 3.2 Anästhesie der Versuchstiere 3.3 Verwendete Materialien und Geräte 3.4 Verwendete Agenzien 3.5 Herstellung der 18F-markierten Tracer 3.5.1 Physikalische Grundlagen 3.5.2 Herstellung des radioaktiven Isotops 18F 3.5.3 Aminosäuren-Tracer auf Phenylalanin-Basis 3.6 Verwendete Zelllinien 3.6.1 U87 MG Zelllinie (humanes Glioblastom) 3.6.2 MCF-7 Zelllinie (humanes Brustadenokarzinom) 3.6.3 PC-3 Zelllinie (humanes Prostataadenokarzinom) 3.7 Zellaufnahmeversuche in vitro 3.7.1 Zellkultivierung 3.7.2 Versuchsdurchführung der zellulären Tracer-Aufnahme 3.7.3 Versuchsdurchführung der kompetitiven Inhibitionsstudien 3.7.4 Versuchsdurchführung der Proteininkorporation 3.7.5 Messung der zellulären Tracer-Aufnahme 3.8 Biodistributionsstudien in der gesunden Ratte 3.8.1 Versuchstiere 3.8.2 Versuchsaufbau 3.9 Subkutanes Tumor-Xenograft-Modell der Maus 3.9.1 Versuchstiere 3.9.2 Verwendete Zelllinien 3.9.3 Versuchsaufbau 3.9.4 Diagnostische Verfahren 3.10 Orthotopes Tumor-Xenograft-Modell der Ratte 3.10.1 Versuchstiere 3.10.2 Verwendete Zelllinie 3.10.3 Versuchsaufbau 3.10.4 Diagnostische Verfahren 3.10.5 Transkardiale Perfusion und Gehirnentnahme nach Versuchsende 3.11 PET-Messungen 3.11.1 Rekonstruktion der PET-Bilder 3.11.2 Auswertung der PET-Bilder mit der Software VINCI 3.11.3 Biodistributionsstudien in der gesunden Ratte 3.11.4 Subkutanes Tumor-Xenograft-Modell der Maus 3.11.5 Orthotopes Tumor-Xenograft-Modell der Ratte 3.12 Statistische Auswertung 4. ERGEBNISSE 4.1 Zellaufnahmeversuche in vitro 4.1.1 Zelluläre Tracer-Aufnahme 4.1.2 Kompetitive Inhibitionsstudien 4.1.3 Proteininkorporation 4.2 Biodistributionsstudien in der gesunden Ratte 4.2.1 3-L-[18F]Fluorphenylalanin 4.2.2 3-D-[18F]Fluorphenylalanin 4.2.3 α-Methyl-2-[18F]Fluorphenylalanin 4.2.4 α-Methyl-3-[18F]Fluorphenylalanin 4.2.5 α-Methyl-4-[18F]Fluorphenylalanin 4.2.6 Vergleichende Auswertung 4.3 Subkutanes Tumor-Xenograft-Modell der Maus 4.3.1 Versuchsablauf und Gewichtsentwicklung 4.3.2 PET-Messungen MCF-7 Zelllinie 4.3.3 PET-Messungen PC-3 Zelllinie 4.3.4 Vergleichende Auswertung 4.3.5 Histologische Verfahren 4.4.1 Versuchsablauf und Gewichtsentwicklung 4.4.2 MRT- und PET-Messungen 4.4.3 Vergleichende Auswertung 4.4.4 Immunhistochemie 5. DISKUSSION 5.1 Zellaufnahmeversuche in vitro 5.2 Biodistributionsstudien in der gesunden Ratte 5.3 Subkutanes Tumor-Xenograft-Modell der Maus 5.4 Orthotopes Tumor-Xenograft-Modell der Ratte 5.5 Synopsis: Gegenüberstellung der untersuchten Tracer 5.6 Ausblick 6. ZUSAMMENFASSUNG 7. SUMMARY 8. REFERENZEN 8.1 Abbildungsverzeichnis 8.2 Tabellenverzeichnis 8.3 Formelverzeichnis 8.4 Literaturverzeichnis 9. ANHANG 9.1 Subkutanes Tumor-Xenograft-Modell der Maus 9.1.1 PET-Bilder und TACs 3-L-[18F]Fluorphenylalanin 9.1.2 PET-Bilder und TACs 3-D-[18F]Fluorphenylalanin 9.1.3 PET-Bilder und TACs α-Methyl-2-[18F]Fluorphenylalanin 9.1.4 PET-Bilder und TACs α-Methyl-3-[18F]Fluorphenylalanin 9.1.5 PET-Bilder und TACs α-Methyl-4-[18F]Fluorphenylalanin 9.1.6 PET-Bilder und TACs [18F]Fluorethyltyrosin 9.2 Orthotopes Tumor-Xenograft-Modell der Ratte 9.2.1 MRT-und PET-Bilder 3-L-[18F]Fluorphenylalanin 9.2.2 MRT-und PET-Bilder 3-D-[18F]Fluorphenylalanin 9.2.3 MRT-und PET-Bilder α-Methyl-3-[18F]Fluorphenylalanin 9.2.4 MRT-und PET-Bilder [18F]Fluorethyltyrosin 9.3 Durchführung der histologischen Verfahren 9.3.1 Hämatoxylin-Eosin-Färbung 9.3.2 Anti-LAT1(SLC7A5)-Färbung 9.3.3 Anti-ASCT2(SLC1A5)-Färbung 9.4 Statistische Auswertung 9.4.1 Zellaufnahmeversuche in vitro 9.4.2 Biodistributionsstudien in der gesunden Ratte 9.4.3 Subkutanes Tumor-Xenograft-Modell der Maus 9.4.4 Orthotopes Tumor-Xenograft-Modell der Ratte 10. DANKSAGUNG
34

Development of a Parallel Computing Optimized Head Movement Correction Method in Positron Emission Tomography

Langner, Jens 19 February 2004 (has links)
As a modern tomographic technique, Positron-Emission-Tomography (PET) enables non-invasive imaging of metabolic processes in living organisms. It allows the visualization of malfunctions which are characteristic for neurological, cardiological, and oncological diseases. Chemical tracers labeled with radioactive positron emitting isotopes are injected into the patient and the decay of the isotopes is then observed with the detectors of the tomograph. This information is used to compute the spatial distribution of the labeled tracers. Since the spatial resolution of PET devices increases steadily, the whole sensitive process of tomograph imaging requires minimizing not only the disturbing effects, which are specific for the PET measurement method, such as random or scattered coincidences, but also external effects like body movement of the patient. Methods to correct the influences of such patient movement have been developed in previous studies at the PET center, Rossendorf. These methods are based on the spatial correction of each registered coincidence. However, the large amount of data and the complexity of the correction algorithms limited the application to selected studies. The aim of this thesis is to optimize the correction algorithms in a way that allows movement correction in routinely performed PET examinations. The object-oriented development in C++ with support of the platform independent Qt framework enables the employment of multiprocessor systems. In addition, a graphical user interface allows the use of the application by the medical assistant technicians of the PET center. Furthermore, the application provides methods to acquire and administrate movement information directly from the motion tracking system via network communication. Due to the parallelization the performance of the new implementation demonstrates a significant improvement. The parallel optimizations and the implementation of an intuitive usable graphical interface finally enables the PET center Rossendorf to use movement correction in routine patient investigations, thus providing patients an improved tomograph imaging. / Die Positronen-Emissions-Tomographie (PET) ist ein modernes medizinisches Diagnoseverfahren, das nichtinvasive Einblicke in den Stoffwechsel lebender Organismen ermöglicht. Es erfasst Funktionsstörungen, die für neurologische, kardiologische und onkologische Erkrankungen charakteristisch sind. Hierzu werden dem Patienten radioaktive, positronen emittierende Tracer injiziert. Der radioaktive Zerfall der Isotope wird dabei von den umgebenden Detektoren gemessen und die Aktivitätsverteilung durch Rekonstruktionsverfahren bildlich darstellbar gemacht. Da sich die Auflösung solcher Tomographen stetig verbessert und somit sich der Einfluss von qualitätsmindernden Faktoren wie z.B. das Auftreten von zufälligen oder gestreuten Koinzidenzen erhöht, gewinnt die Korrektur dieser Einflüsse immer mehr an Bedeutung. Hierzu zählt unter anderem auch die Korrektur der Einflüsse eventueller Patientenbewegungen während der tomographischen Untersuchung. In vorangegangenen Studien wurde daher am PET Zentrum Rossendorf ein Verfahren entwickelt, um die nachträgliche listmode-basierte Korrektur dieser Bewegungen durch computergestützte Verfahren zu ermöglichen. Bisher schränkte der hohe Rechenaufwand den Einsatz dieser Methoden jedoch ein. Diese Arbeit befasst sich daher mit der Aufgabe, durch geeignete Parallelisierung der Korrekturalgorithmen eine Optimierung dieses Verfahrens in dem Maße zu ermöglichen, der einen routinemässigen Einsatz während PET Untersuchungen erlaubt. Hierbei lässt die durchgeführte objektorientierte Softwareentwicklung in C++ , unter Zuhilfenahme des plattformübergreifenden Qt Frameworks, eine Nutzung von Mehrprozessorsystemen zu. Zusätzlich ermöglicht eine graphische Oberfläche die Bedienung einer solchen Bewegungskorrektur durch die medizinisch technischen Assistenten des PET Zentrums. Um darüber hinaus die Administration und Datenakquisition der Bewegungsdaten zu ermöglichen, stellt die entwickelte Anwendung Funktionen bereit, die die direkte Kommunikation mit dem Bewegungstrackingsystem erlauben. Es zeigte sich, dass durch die Parallelisierung die Geschwindigkeit wesentlich gesteigert wurde. Die parallelen Optimierungen und die Implementation einer intuitiv nutzbaren graphischen Oberfläche erlaubt es dem PET Zentrum nunmehr Bewegungskorrekturen innerhalb von Routineuntersuchungen durchzuführen, um somit den Patienten ein verbessertes Bildgebungsverfahren bereitzustellen.
35

Radiotracer für die molekulare Bildgebung: Radiomarkierung von Inhibitoren der CDK4/6 mit den Radionukliden Iod-124 und Fluor-18

Köhler, Lena 11 May 2010 (has links)
Krebserkrankungen stellen in Deutschland die zweithäufigste Todesursache dar und die Anzahl der Neuerkrankungen nimmt stetig zu. Frühzeitige Diagnosen und Therapiemöglichkeiten sind daher dringend erforderlich. Cyklinabhängige Proteinkinasen (Cdk) spielen eine entscheidende Rolle bei der Regulation des Zellzyklus. Viele Tumore zeigen eine deregulierte Cdk4‑Aktivität und/oder ‑Expression. Insgesamt zeigen ca. 80% aller Tumore eine Fehlregulation der für den Zellzyklus zentralen Cdk4/CykD1/INK4/pRb/E2F Signalkaskade. Somit besitzen Cdks ein enormes therapeutisches Potential im Kampf gegen Krebs. Die spezifische Inhibierung der Cdks verhindert die Zellproliferation und damit das Tumorwachstum. In den letzten Jahren wurden verschiedenste Strukturklassen vorgestellt, die als Cdk4-Inhibitor wirken. Im Rahmen der Promotion sollen die Möglichkeiten einer funktionellen Tumordiagnose mittels cyklinabhängiger Kinasen untersucht werden. Die Entwicklung von radioaktiv markierten Inhibitoren der Cdk4/6 als Radiotracer und ihre radiopharmakologische Charakterisierung stellt dabei einen neuen Ansatz dar. Um die Rolle der Cdk4/6 im Zellzyklus von gesunden und deregulierten (z.B. Tumor-) Zellen aufzuklären, sollten mit Iod-124 und Fluor-18 markierte Inhibitoren eingesetzt werden, die hochselektiv diese Cdks blockieren. Zunächst wurden verschiedene Inhibitoren der Cdk4/6 und deren Vorstufen für die Radiomarkierung dargestellt. Die bereits aus den Vorarbeiten von VanderWel et al., 2005 und Toogood et al., 2001 bekannten Syntheserouten mussten dazu optimiert werden und für neue Verbindungen, wie die fluorethylierten Substanzen, wurden neue Reaktionswege gefunden. Die dargestellten Referenzverbindungen CKIA-E wurden anschließend mittels Durchflusszytometrie an den Zelllinien HT-29 und FaDu auf ihre inhibitorischen Wirkung untersucht. Die Untersuchungen der Verbindungen CKIA/B/E zeigte, dass ein Zellzyklusarrest unter Einwirkung der Inhibitoren erreichbar ist. Die weiteren Untersuchungen zur Radiomarkierbarkeit sowie die radiopharmakologische Evaluation sollten daher an den Verbindungen CKIA, CKIB und CKIE stattfinden. Die Darstellung der Verbindungen [124I]CKIA und [124I]CKIB erfolgte in zwei Schritten über die elektrophile Substitution durch regioselektive Destannylierung mit anschließender Entschützung der Seitenkette. Die Darstellung der fluorethylierten Verbindung erfolgte ebenfalls über eine Zweischrittsynthese beginnend mit der Synthese der prosthetischen Gruppe [18F]BFE aus der Tosylmarkierungsvorstufe. Die zur Markierung des sekundären Amins zur Auswahl stehenden prosthetischen Gruppen [18F]Fluorethyltosylat ([18F]FETos) und [18F]Bromfluorethan ([18F]BFE) wurden auf ihre Eignung untersucht, ebenso wie die Auswahl einer geeigneten Markierungsvorstufe für die Darstellung der prosthetischen Gruppe. Die optimierten Syntheserouten ermöglichten die Isolierung von ausreichenden Mengen an Produktaktivität für die radiopharmakologischen Untersuchungen. Es fanden, neben der Bestimmung der spezifischen Aktivität und der Lipophilie der Verbindungen, Zellaufnahmeuntersuchungen und Bestimmungen zur Stabilität der Verbindungen in vitro, ex vivo und in vivo statt. Die radioiodierten Verbindungen konnten des Weiteren zur Untersuchungen der Bioverteilung in normalen männlichen Wistar-Ratten eingesetzt werden. Für alle drei Verbindungen konnte eine sehr hohe in vitro-Stabilität festgestellt werden. Die Zellaufnahmeuntersuchungen zeigten vor allem für die Verbindungen [124I]CKIA und [124I]CKIB eine beträchtliche Zellaufnahme von über 1000% ID/mg Protein nach 2 h. Die Zellaufnahme der Verbindung CKIE ist geringer, sollte allerdings für eine in vivo-Anwendung ausreichend sein. Die Untersuchung der in vivo‑Stabilität der Verbindungen [124I]CKIA, [124I]CKIB und [18F]CKIE im Blut von Wistar Ratten ergab allerdings, dass alle Verbindungen schnell metabolisiert werden. Die Untersuchung der Bioverteilung der radioiodierten Verbindungen belegen eine in vivo Radiodeiodierung sowie eine hohe hepatobliliäre Auscheidungsrate. Im Hinblick auf eine Anwendung als Radiotracer konnten im Rahmen dieser Arbeit neue Erkenntnisse gewonnen werden. Die dargestellten Inhibitoren sind in der Lage am Zellmodell den Zellzyklusarrest in der G1-Phase zu induzieren. Eine Radiomarkierung der ausgewählten Strukturen liefert das Produkt mit reproduzierbarer Ausbeute in hoher radiochemischer Reinheit und ausreichender spezifischer Aktivität, allerdings ist eine Herstellung der fluorethylierten Verbindung unter GMP-Bedingungen nur schwer realisierbar. Die radiomarkierten Verbindungen zeigen eine hohe in vitro-Stabilität und werden energieabhängig in die Zelle aufgenommen. Anhand der Stabilitätsuntersuchungen in vivo wurde gezeigt, dass alle drei Verbindungen in vivo instabil sind und sehr schnell hepatobiliär eliminiert.
36

Image Registration for the Prostate

FEI, Baowei 29 October 2008 (has links)
No description available.
37

Positron Emission Tomography Imaging of Hepatocellular Carcinoma with Radiolabeled Choline

Kuang, Yu 03 April 2009 (has links)
No description available.
38

Development and Performance Evaluation of High Resolution TOF-PET Detectors Suitable for Novel PET Scanners

Lamprou, Efthymios 04 March 2021 (has links)
Tesis por compendio / [ES] La Tomografía por Emisión de Positrones (PET) es una de las técnicas más importantes en la medicina de diagnóstico actual y la más representativa en el campo de la Imagen Molecular. Esta modalidad de imagen es capaz de producir información funcional única, que permite la visualización en detalle, cuantificación y conocimiento de una variedad de enfermedades y patologías. Áreas como la oncología, neurología o la cardiología, entre otras, se han beneficiado en gran medida de esta técnica. A pesar de que un elevado número de avances han ocurrido durante el desarrollo del PET, existen otros que son de gran interés para futuras investigaciones. Uno de los principales pilares actualmente en PET, tanto en investigación como en desarrollo, es la obtención de la información del tiempo de vuelo (TOF) de los rayos gamma detectados. Cuando esto ocurre, aumenta la sensibilidad efectiva del PET, mejorando la calidad señal-ruido de las imágenes. Sin embargo, la obtención precisa de la marca temporal de los rayos gamma es un reto que requiere, además de técnicas y métodos específicos, compromisos entre coste y rendimiento. Una de las características que siempre se ve afectada es la resolución espacial. Como discutiremos, la resolución espacial está directamente relacionada con el tipo de centellador y, por lo tanto, con el coste del sistema y su complejidad. En esta tesis, motivada por los conocidos beneficios en imagen clínica de una medida precisa del tiempo y de la posición de los rayos gamma, proponemos configuraciones de detectores TOF- PET novedosos capaces de proveer de ambas características. Sugerimos el uso de lo que se conoce como métodos de "light-sharing", tanto basado en cristales monolíticos como pixelados de tamaño diferente al del fotosensor. Estas propuestas hacen que la resolución espacial sea muy alta. Sin embargo, sus capacidades temporales han sido muy poco abordadas hasta ahora. En esta tesis, a través de varios artículos revisados, pretendemos mostrar los retos encontrados en esta dirección, proponer determinadas configuraciones y, además, indagar en los límites temporales de éstas. Hemos puesto un gran énfasis en estudiar y analizar las distribuciones de la luz centellante, así como su impacto en la determinación temporal. Hasta nuestro conocimiento, este es el primer trabajo en el que se estudia la relación de la determinación temporal y la distribución de luz de centelleo, en particular usando SiPM analógicos y ASICs. Esperamos que esta tesis motive y permita otros muchos trabajos orientados en nuevos diseños, útiles para instrumentación PET, así como referencia para otros trabajos. Esta tesis esta organizada como se describe a continuación. Hay una introducción compuesta por tres capítulos donde se resumen los conocimientos sobre imagen PET, y especialmente aquellos relacionados con la técnica TOF-PET. Algunos trabajos recientes, pero aún no publicados se muestran también, con el objetivo de corroborar ciertas ideas. En la segunda parte se incluyen las cuatro contribuciones que el candidato sugiere para el compendio de artículos. / [CA] La Tomografia per Emissió de Positrons (PET) és una de les tècniques més importants en la medicina de diagnòstic actual i la més representativa en el camp de la Imatge Molecular. Esta modalitat d'imatge és capaç de produir informació funcional única, que permet la visualització en detall, quantificació i coneixement d'una varietat de malalties i patologies. Àrees com l'oncologia, neurologia o la cardiologia, entre altres, s'han beneficiat en gran manera d'aquesta tècnica. Tot i que un elevat nombre d'avanços han ocorregut durant el desenvolupament del PET, hi ha altres que són de gran interés per a futures investigacions. Un dels principals pilars actuals en PET, tant en investigació com en desenvolupament, és l'obtenció de la informació del temps de vol (TOF en anglès) dels raigs gamma detectats. Quan açò ocorre, augmenta la sensibilitat efectiva del PET, millorant la qualitat senyal-soroll de les imatges. No obstant això, l'obtenció precisa de la marca temporal dels raigs gamma és un repte que requerix, a més de tècniques i mètodes específics, compromisos entre cost i rendiment. Una de les característiques que sempre es veu afectada és la resolució espacial. Com discutirem, la resolució espacial està directament relacionada amb el tipus de centellador, i per tant, amb el cost del sistema i la seua complexitat. En aquesta tesi, motivada pels coneguts beneficis en imatge clínica d'una mesura precisa del temps i de la posició dels raigs gamma, proposem nouves configuracions de detectors TOF-PET capaços de proveir d'ambduess característiques. Suggerim l'ús del que es coneix com a mètodes de "light-sharing", tant basat en cristalls monolítics com pixelats de diferent tamany del fotosensor. Aquestes propostes fan que la resolució espacial siga molt alta. No obstant això, les seues capacitats temporals han sigut molt poc abordades fins ara. En aquesta tesi, a través de diversos articles revisats, pretenem mostrar els reptes trobats en aquesta direcció, proposar determinades configuracions i, a més, indagar en els límits temporals d'aquestes. Hem posat un gran èmfasi a estudiar i analitzar les distribucions de la llum centellejant, així com el seu impacte en la determinació temporal. Fins al nostre coneixement, aquest és el primer treball en què s'estudia la relació de la determinació temporal i la distribució de llum de centelleig, en particular utilitzant SiPM analògics i ASICs. Esperem que aquesta tesi motive i permeta molts altres treballs orientats en nous dissenys, útils per a instrumentació PET, així com referència per a altres treballs. Aquesta tesi esta organitzada com es descriu a continuació. Hi ha una introducció composta per tres capítols on es resumeixen els coneixements sobre imatge PET i, especialmente, aquells relacionats amb la tècnica TOF-PET. Alguns treballs recents, però encara no publicats es mostren també, amb l'objectiu de corroborar certes idees. La segona part de la tesi conté els quatre articles revisats que el candidat suggereix. / [EN] Positron Emission Tomography (PET) is one of the greatest tools of modern diagnostic medicine and the most representative in the field of molecular imaging. This imaging modality, is capable of providing a unique type of functional information which permits a deep visualization, quantification and understanding of a variety of diseases and pathologies. Areas like oncology, neurology, or cardiology, among others, have been well benefited by this technique. Although numerous important advances have already been achieved in PET, some other individual aspects still seem to have a great potential for further investigation. One of the main trends in modern PET research and development, is based in the extrapolation of the Time- Of-Flight (TOF) information from the gamma-ray detectors. In such case, an increase in the effective sensitivity of PET is accomplished, resulting in an improved image signal-to-noise ratio. However, the direction towards a precise decoding of the photons time arrival is a challenging task that requires, besides specific approaches and techniques, tradeoffs between cost and performance. A performance characteristic very habitually compromised in TOF-PET detector configurations is the spatial resolution. As it will be discussed, this feature is directly related to the scintillation materials and types, and consequently, with system cost and complexity. In this thesis, motivated by the well-known benefits in clinical imaging of a precise time and spatial resolution, we propose novel TOF-PET detector configurations capable of inferring both characteristics. Our suggestions are based in light sharing approaches, either using monolithic detectors or crystal arrays with different pixel-to-photosensor sizes. These approaches, make it possible to reach a precise impact position determination. However, their TOF capabilities have not yet been explored in depth. In the present thesis, through a series of peer-reviewed publications we attempt to demonstrate the challenges encountered in these kinds of configurations, propose specific approaches improving their performance and eventually reveal their limits in terms of timing. High emphasis is given in analyzing and studying the scintillation light distributions and their impact to the timing determination. To the best of our knowledge, this is one of the first works in which such detailed study of the relation between light distribution and timing capabilities is carried out, especially when using analog SiPMs and ASICs. Hopefully, this thesis will motivate and enable many other novel design concepts, useful in PET instrumentation as well as it will serve as a helpful reference for similar attempts. The present PhD thesis is organized as follows. There is an introduction part composed by three detailed sections. We attempt to summarize here some of the knowledge related to PET imaging and especially with the technique of TOF-PET. Some very recent but still unpublished results are also presented and included in this part, aiming to support statements and theories. The second part of this thesis lists the four peer-reviewed papers that the candidate is including. / This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 695536). It has also been supported by the Spanish Ministerio de Economía, Industria y Competitividad under Grants No. FIS2014-62341-EXP and TEC2016-79884-C2-1-R. Efthymios Lamprou has also been supported by Generalitat Valenciana under grant agreement GRISOLIAP-2018-026. / Lamprou, E. (2021). Development and Performance Evaluation of High Resolution TOF-PET Detectors Suitable for Novel PET Scanners [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/162991 / Compendio
39

Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET Applications

Freire López-Fando, Marta 07 September 2023 (has links)
Tesis por compendio / [ES] La Tomografía por Emisión de Positrones (PET) es una potente técnica de imagen que proporciona mediante el uso de radiofármacos específicos medidas cuantitativas de los procesos biológicos y fisiológicos que tienen lugar en el organismo a nivel molecular. Las imágenes PET proporcionan información funcional que permite el diagnóstico precoz y el seguimiento personalizado del tratamiento terapéutico. La PET tiene aplicaciones en diversas áreas clínicas y de investigación, como la oncología, la neurología o la cardiología, entre otras. Los esfuerzos por mejorar las prestaciones de los sistemas PET se centran en aumentar su sensibilidad y calidad de imagen, lo que permite una evaluación clínica más precisa. En las imágenes PET, se inyecta al paciente un radiotrazador marcado con un radionúclido emisor de positrones que se distribuye por todo el cuerpo. Durante la desintegración radiactiva del trazador, el isótopo emite un positrón que se aniquila con un electrón del tejido circundante, generando dos rayos gamma de 511 keV emitidos a aproximadamente 180º. La técnica PET se basa por tanto en la detección simultánea de estos dos rayos gamma, denominados fotones de aniquilación, empleando habitualmente un anillo de detectores alrededor del paciente. Mejorando el diseño y el rendimiento de estos detectores, se mejoran las capacidades diagnósticas que ofrece la imagen PET. Para aumentar el rendimiento, se ha sugerido utilizar detectores basados en diseños de cristales monolíticos, debido a sus ventajas en comparación con los detectores pixelados. Sin embargo, su implementación en escáneres comerciales requiere superar algunos retos relacionados principalmente con los métodos de posicionamiento y los procedimientos de calibración necesarios para proporcionar las coordenadas de impacto del fotón de aniquilación y el tiempo de llegada de los fotones. Esta tesis doctoral se centra en el desarrollo y validación experimental de metodologías para la determinación precisa de esta información en detectores monolíticos, haciendo hincapié en su aplicación práctica también a sistemas PET completos. Durante esta tesis se han estudiado los principios fundamentales de los detectores PET monolíticos para comprender su comportamiento y limitaciones. En primer lugar, se han considerado las configuraciones típicas de detectores monolíticos basadas en bloques de centelleo continuo acoplados a matrices de SiPMs planas; además, también se han evaluado y validado otros enfoques novedosos. Se han desarrollado dos metodologías principales, una basada en técnicas analíticas y otra en algoritmos de Aprendizaje Profundo, para el posicionamiento 3D de la interacción del fotón con el fin de aumentar el rendimiento global del detector. Finalmente, los métodos propuestos han sido validados a nivel de detector, pero también en diferentes escáneres PET desarrollados en i3M. La presente tesis se basa en un compendio de los artículos más relevantes publicados en revistas revisadas por pares por el doctorando y está organizada de la siguiente manera. El Capítulo I presenta una introducción al trabajo de la tesis, compuesto por tres secciones: Imagen Médica, principios de la Tomografía por Emisión de Positrones y, Estimación de posición y calibración en detectores monolíticos. El Capítulo II contiene los objetivos específicos de esta tesis y las principales contribuciones del candidato a este campo. Este capítulo también incluye algunas metodologías y resultados recientes que aún no han sido publicados. El Capítulo III colecciona una copia de los cuatro artículos publicados seleccionados para el compendio, en los que el candidato es el primer autor [1]-[4]. En el Capítulo IV se discuten los principales resultados y conclusiones alcanzados durante la tesis. Por último, el Capítulo V presenta la discusión de esta tesis, resumiendo las principales contribuciones y destacando los logros científicos. / [CAT] La Tomografia per Emissió de Positrons (PET) és una potent tècnica d'imatge que proporciona mitjançant l'ús de radiofàrmacs específics mesures quantitatives dels processos biològics i fisiològics que tenen lloc en l'organisme a nivell molecular. Les imatges PET proporcionen informació funcional que permet el diagnòstic precoç i el seguiment personalitzat del tractament terapèutic. La PET té aplicacions en diverses àrees cliniques y d¿investigació, com l'oncologia, la neurologia o la cardiologia, entre altres. Els esforços per millorar les prestacions dels sistemes PET se centren en millorar la seua sensibilitat i qualitat d'imatge, la qual cosa permet una avaluació clínica més precisa més precís. En les imatges PET, s'injecta al pacient un radiotraçador marcat amb un radionúclid emissor de positrons que es distribueix per tot el cos. Durant la desintegració radioactiva del traçador, l'isòtop emet un positró que s'aniquila amb un electró del teixit circumdant, generant dos raigs gamma de 511 keV emesos a aproximadament 180º. La tècnica PET es basa per tant en la detecció simultània d'aquests dos raigs gamma, denominats fotons d'anihilació, emprant habitualment un anell de detectors al voltant del pacient. Millorant el disseny i el rendiment d'aquests detectors, es millora les capacitats diagnòstiques que ofereix la imatge PET. Per a augmentar el rendiment, s'ha suggerit utilitzar detectors basats en dissenys de cristalls monolítics, a causa dels seus avantatges en comparació amb els detectors pixelats. No obstant això, la seua implementació en escàners comercials requereix superar alguns reptes relacionats principalment amb els mètodes de posicionament i els procediments de calibració necessaris per a proporcionar les coordenades d'impacte del fotó d'anihilació i el temps d'arribada dels fotons. Aquesta tesi doctoral se centra en el desenvolupament i validació experimental de metodologies per a la determinació precisa d'aquesta informació en detectors monolítics, posant l'accent en la seua aplicació pràctica també a sistemes PET complets. Durant aquesta tesi s'han estudiat els principis fonamentals dels detectors PET monolítics per a comprendre el seu comportament i limitacions. En primer lloc, s'han considerat les configuracions típiques de detectors monolítics basats en blocs de centellege continu acoblats a matrius SiPM planes; a més, també s'han evaluat i validat altres enfocaments nous. S'han desenvolupat dues metodologies principals, una basada en tècniques analítiques i una altra en algoritmes d'Aprenentatge Profund, pel posicionament 3D de la interacció del fotó amb la finalitat d'augmentar el rendiment global del detector. Finalment, els mètodes proposats han sigut validats a nivell de detector però també en diferents escàners PET desenvolupats en i3M. La present tesi es basa en un compendi dels articles més rellevants publicats en revistes revisades per parells pel doctorand i està organitzada de la següent manera. El Capítol I presenta una introducció al treball de tesi, compost per tres seccions: Imatge Mèdica, principis de la Tomografia per Emissió de Positrons i, Estimació de posició i calibració en detectors monolítics. El Capítol II conté els objectius específics d'aquesta tesi i les principals contribucions del candidat a aquest camp. Aquest capítol també inclou algunes metodologies i resultats recents que encara no han sigut publicats. El Capítol III col·lecciona una còpia dels quatre articles publicats seleccionats pel compendi, en els quals el candidat és el primer autor [1]-[4]. En el Capítol IV es discuteixen els principals resultats i conclusions aconseguits durant la tesi. Finalment, el Capítol V presenta la discussió d'aquesta tesi, resumint les principals contribucions i destacant els assoliments científics. / [EN] Positron Emission Tomography (PET) is a powerful imaging technique that provides quantitative measurements of biological and physiological processes occurring within the body at the molecular level by using specific radiopharmaceuticals. PET imaging returns functional information that allows for early diagnosis and personalized therapy treatment follow up. It has applications in several research and clinical areas, such as oncology, neurology or cardiology, among others. Efforts to improve PET systems performance are focused on increasing their sensitivity and image quality, allowing for more accurate clinical assessments. In PET imaging, a radiotracer labeled with a positron-emitting radionuclide is injected to the patient and consequently, distributed throughout the body. During the radiotracer decay, the isotope emits a positron that annihilates with an electron of the surrounding tissues, generating two 511 keV gamma-rays emitted at approximately 180º. The PET technique is based therefore on the simultaneous detection of these two gamma-rays, called annihilation photons, by usually employing a ring of detectors around the patient. Improving the design and performance of these detectors, increases the diagnostic capabilities of PET imaging. To boost PET performance, it has been suggested to use detectors based on monolithic crystals designs, due to their advantages compared to pixelated detectors. However, their implementation in commercial scanners requires overcoming some challenges mostly related to photon impact positioning methods and calibration procedures to provide the impact coordinates and time of arrival of the annihilation photons. This PhD thesis focuses on the development and experimental validation of methodologies for an accurate determination of this information in monolithic detectors, emphasizing in their practical application to full PET systems. During this thesis, the main principles of monolithic-based PET detectors have been studied to understand their behavior and limitations. Typical monolithic detector configurations based on continuous scintillation blocks coupled to flat SiPM arrays have been first considered; additionally, other novel approaches have been also validated. Two main methodologies for 3D photon interaction positioning, one based on analytical methods and another based on Deep Learning algorithms, have been developed to increase the overall detector performance. The proposed methods have been validated at the detector level but also in different PET scanners developed by our group. The present thesis is based on a compendium of the most relevant papers published in peer-reviewed journals by the PhD candidate and is organized as follows. Chapter I presents an introduction to the thesis work, composed by three sections: Medical Imaging, principles of Positron Emission Tomography and, Position estimation and calibration in monolithic-based detectors. Chapter II contains the specific objectives of this thesis and the main contributions of the candidate to the field. This chapter also includes some recent methodologies and results that have not yet been published. Chapter III collects an author copy of the four published articles selected for the compendium, in which the candidate is the first author [1]-[4]. In Chapter IV the main results and conclusion achieved during the thesis are discussed. Finally, Chapter V presents the discussion of this thesis, summarizing the main contributions and highlighting the scientific achievements. / Freire López-Fando, M. (2023). Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196084 / Compendio
40

Análise da dinâmica e quantificação metabólica de imagens de medicina nuclear na modalidade PET/CT. / Analysis of the dynamic and metabolic quantification of nuclear medicine images in the PET/CT modality.

Florez Pacheco, Edward 28 March 2016 (has links)
A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral. / The presence of Nuclear Medicine as a medical imaging modality is one of the main procedures utilized nowadays in medical centers, and the great advantage of that procedure is its capacity to analyze the metabolic behavior of the patient, resulting in early diagnoses. However, the quantification in Nuclear Medicine is known to be complicated by many factors, such as degradations due to attenuation, scattering, reconstruction algorithms and assumed models. In this context, the goal of this project is to improve the accuracy and the precision of quantification in PET/CT images by means of realistic and well-controlled processes. For this purpose, we proposed to develop a framework, which consists in a set of consecutively interlinked steps that is initiated with the simulation of 3D anthropomorphic phantoms. These phantoms were used to generate realistic PET/CT projections by applying the GATE platform (with Monte Carlo simulation). Then a 3D image reconstruction was executed, followed by a filtering process (using the Anscombe/Wiener filter to reduce Poisson noise characteristic of this type of images) and, a segmentation process (based on the Fuzzy Connectedness theory). After defining the region of interest (ROI), input activity and output response curves are required for the compartment analysis in order to obtain the Metabolic Quantification of the selected organ or structure. Finally, in the same manner real images provided from the Heart Institute (InCor) of Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HC-FMUSP) were analysed. Therefore, it is concluded that the three-dimensional filtering step using the Ascombe/Wiener filter was preponderant and had a high impact on the metabolic quantification process and on other important stages of the whole project.

Page generated in 0.1012 seconds