Spelling suggestions: "subject:"postimplantation"" "subject:"postreimplantation""
1 |
The Germ Cell Fate of Cynomolgus Monkeys is Specified in the Nascent Amnion / カニクイザル生殖細胞は初期羊膜で形成されるSasaki, Kotaro 23 May 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13112号 / 論医博第2130号 / 新制||医||1022(附属図書館) / (主査)教授 浅野 雅秀, 教授 瀬原 淳子, 教授 近藤 玄 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
2 |
Morphogenesis of the early post-implantation mouse embryoKyprianou, Christos January 2019 (has links)
The morphogenetic events that give rise to the early post-implantation mouse embryo (egg cylinder) have not been thoroughly studied and our knowledge is restricted to "snap-shot" descriptions of embryos recovered at different stages of implantation from the mother. A central feature of the egg cylinder is the pro-amniotic cavity, which spans the embryo and participates in formation of the extraembryonic membranes. The major aims of my PhD studies have been to reveal how this cavity is formed (Aim 1) and then how the egg cylinder grows (Aim 2). In order to address how the pro-amniotic cavity forms (Aim 1), I first characterised in detail development of the architecture of the extra-embryonic ectoderm (ExE), which has to be remodelled to permit cavity formation. My findings indicate that the ExE comprises cells in direct contact with a basement membrane and cells that lie deeper in the tissue. The ExE originates in the polar trophectoderm, a monolayer covering the epiblast of the blastocyst, which expands and undergoes invagination to form a slit-like cavity. By carrying out analyses of fixed specimens and live imaging of cultured embryos, I have found that the epiblast and ExE cavity extend towards each other through the formation and resolution of multiple rosette structures. This leads to the fusion of the ExE and epiblast cavities to form the unified pro-amniotic cavity. I show that this process is dependent on signalling cues stemming from the underlying basement membrane that activate the b1-integrin signalling pathway to regulate cell polarity, ExE tissue architecture and rosette formation. In addition to the basement membrane's role in b1-integrin signalling, it also has physical functions that I characterise in the second part of my study (Aim 2). High resolution imaging revealed that the basement membrane underlying the epiblast is highly perforated during the implantation stages. These perforations are initially evenly distributed and then accumulate asymmetrically at the future posterior part of the embryo, just prior to gastrulation. Finally, I demonstrate that remodelling of the basement membrane requires the expression of matrix metalloproteinases (MMPs) in the epiblast under the control of Nodal. The anterior visceral endoderm inhibits Nodal signalling and hence MMP inhibition in the anterior. I demonstrate that activity of the MMPs and perforations in the basement membrane are essential for embryo growth. The domain of posterior basement membrane perforations persists beyond gastrulation suggesting a potential role for these perforations in primitive streak formation and extension. Together, my studies bring new important insights into the understanding of early mouse embryo morphogenesis.
|
3 |
Implant Annealing of Al Dopants in Silicon Carbide using Silane OverpressureRao, Shailaja P 08 July 2005 (has links)
The goal of this research is to develop a post-implantation annealing process in silicon carbide (SiC). Due to the low diffusivities of dopants in SiC, even at temperatures in excess of 2000°C, diffusion is not a suitable process to achieve selective, planar doping. Ion implantation is therefore the most suitable means for achieving selective doping in SiC crystals. The strong covalent bonding in SiC requires that selective doping be performed via high-energy ion implantation. As a consequence of the high ion energy and flux, there is considerable lattice damage to the crystal surface. To repair the damage caused by the implantation, as well as to electrically activate the dopants, it is important to perform post-implantation thermal annealing at temperatures greater than 1600°C. However annealing at such high temperatures decomposes the SiC crystal surface due to the selective out-diffusion of Si causing surface morphology degradation. In this research two processes, both using a silane-based SiC CVD reactor, have been realized to minimize the evaporation of Si. This is accomplished by providing Si overpressure above the wafer surface during annealing thus suppressing the evaporation of Si from the lattice.
Post-implantation anneals were performed in both hot-wall and cold-wall silane-based chemical vapor deposition (CVD) reactors. For each process temperature developed, silane was added to a stream of Ar in such a concentration such that the suppression of step-bunching, a well known phenomenon caused by the evaporation of Si at the surface, was achieved. The surfaces were studied after annealing via plan-view secondary electron microscopy (SEM) and atomic force microscopy (AFM). The resulting surface morphology was found to be both step-free and smooth. Results of the annealing process developed, the surface characterization performed and electrical data relating to the dopant activation and implanted region conductivity are presented.
|
4 |
The requirement of Smad4 in Mouse Early Embryonic DevelopmentGuo, Jiami 26 July 2012 (has links)
No description available.
|
Page generated in 0.0854 seconds