Spelling suggestions: "subject:"posttranslational"" "subject:"poststranslational""
131 |
Régulation des aquaporines et réponse des racines d'Arabidopsis thaliana à des stimuli abiotiques et nutritionnels. / Regulation of aquaporins and response of Arabidopsis thaliana roots to abiotic and nutritional stimuli.Di Pietro, Magali 13 December 2011 (has links)
La conductivité hydraulique racinaire (Lpr) traduit la facilité du passage de l'eau au travers des racines. Ce paramètre, majoritairement contrôlé par l'activité de canaux hydriques membranaires (aquaporines), est modulable par diverses contraintes environnementales. Ce travail a permis de caractériser, sur un même organisme (Arabidopsis), les effets d'un ensemble de contraintes abiotiques et biotiques, représentatives de situations environnementales, sur la Lpr. Alors que la flagelline n'affecte pas la Lpr, les contraintes osmotiques (NaCl, mannitol), oxydantes (H2O2, NO) et nutritionnelles (carence en phosphate, en nitrate, culture des plantes en nuit prolongée) inhibent la Lpr. Par contre, la réalimentation en phosphate ainsi que l'addition de saccharose à des plantes cultivées en nuit prolongée stimulent la Lpr. Une approche phosphoprotéomique quantitative, basée sur l'analyse par MS de protéines microsomales racinaires purifiées à partir de plantes cultivées dans trois de ces contextes (NaCl, NO, phosphate) a permis de quantifier les variations d'abondance de l'ensemble des aquaporines racinaires ainsi que de leur état de MPT. D'un point de vue qualitatif, 22 aquaporines ont été identifiées dans la racine ainsi que plusieurs types de MPTs, incluant des nouveaux sites de phosphorylation (7), de méthylation (13 à 15), de formylation (4) et de déamidation (25 à 26). D'un point de vue quantitatif, cette étude a permis de conclure que les observations réalisées au niveau de la Lpr sont la résultante de mécanismes multifactoriels incluant l'état de phosphorylation des trois sites de l'extrémité C terminale de PIP2;1/2;2/2;3, l'état de phosphorylation de l'extrémité N terminale de PIP1;1/1;2, ainsi que les aquaporines TIPs. Ce travail permet donc de proposer de nouveaux mécanismes moléculaires impliqués dans la régulation de la Lpr en réponse à des contraintes de l'environnement / The water uptake capacity of plant roots (root hydraulic conductivity, Lpr) is mainly determined by water channels (aquaporins) and is modulated by environmental constraints. The present work characterised, in a unique organism (Arabidopsis), effects on Lpr of abiotic and biotic constraints representative of environmental situations. Whereas flagelline does not affect Lpr, osmotic (NaCl or mannitol), oxidative (H2O2 or NO) and nutritional (phosphate or nitrate starvation, prolonged night) stimuli inhibit Lpr. However, phosphate and sucrose resupply stimulate Lpr. A phosphoproteomics approach based on MS analysis of microsomal proteins extracted from roots of plants cultivated in different environmental constraints (NaCl, NO,phosphate starvation and resupply) allowed to quantify variations of abundance of roots aquaporins and of their PTMs. As a qualitative point of view, 22 aquaporins were identified in roots as well as several post-translational modifications including new sites of phosphorylation (7), methylation (13 to 15), formylation (4) and deamidation (25 to 26). From a quantitative point of view, the present work drove to the conclusion that the modulations of Lpr result from multifactorial mechanisms including the phosphorylation status of the C terminal part of PIP2;1/2;2/2;3 and of the N-terminal part of PIP1;1/1;2 and TIP aquaporins. This study proposes new molecular mechanisms implicated in Lpr regulation in response to various environmental situations.
|
132 |
Integrated strategies to develop post-translationally modified proteins in extracellular vesicles as candidate disease markersHillary Andaluz Aguilar (9745967) 15 December 2020 (has links)
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing proteins and
nucleic acid cargo. These vesicles are released by almost all cell types and provide an effective
and ubiquitous path for intercellular communication and transmission of pathogenic and signaling
molecules among cells. Research into potential biomarkers isolated from EV has been propelled
by the development of methods and tools to acquire them by minimally and non-invasive means,
which reinforces their great diagnostic potential. In the context of cancer, this opens the door to
apply EV based liquid biopsy for early detection prior to alternate, more prevailing diagnostic tools
like imaging studies. In autoimmune diseases, EVs play a crucial role in immune responses and as
immunomodulatory agents as they can modulate the function of a wide variety of immune cells,
especially in antigen-presenting cells (APCs). Several efforts have been made to study EVs and
their cargo in numerous disease models, but very few in autoimmunity. Autoimmune diseases are
chronic, have been underexplored especially in the omics area, and their diagnosis and treatment
rely on traditional therapy. Therefore, there is a need for efficient methods to elucidate biomarkers
that could provide additional layers of information for treatment, diagnosis, and prognosis.
Additionally, protein post-translational modifications (PTMs), such as phosphorylation,
glycosylation, and acetylation, are involved in multiple essential cellular processes and represent
an important mechanism of regulation for cellular physiological functions, leading to the
development of effective and targeted therapeutics. Discovery and profiling PTMs have
established the relevance of PTMs in EVs and associated EV functions and novel applications.
This dissertation proposes integrated proteomic strategies to efficiently isolate and analyze
EVs in human plasma from different types of pathologies like cancer and autoimmune diseases.
The main focus is the development of the platforms, to not only isolate the proteome from EVs,
but also PTMs including phosphorylation, glycosylation and acetylation, simultaneously. Chapter
one, which is the core of this dissertation, describes the platform to sequentially isolate and analyze
the EV proteome, phosphoproteome and glycoproteome from human plasma. Chapters two and
three focus on the ongoing application of this platform with slight modifications into different
disease models, in this case breast cancer subtypes and autoimmune diseases.
|
133 |
Regulation of the Drosophila Initiator Caspase Dronc through UbiquitylationKamber Kaya, Hatem E. 17 January 2017 (has links)
Apoptosis is a programmed cell death mechanism that is evolutionary conserved from worms to humans. Apoptosis is mediated by initiator and effector caspases. The initiator caspases carry long pro-domains for their interaction with scaffolding proteins to form a cell-death platform, which is essential for their activation. Activated initiator caspases then cleave effector caspases that execute cell death through cleaving downstream targets. In addition to their apoptotic function, caspases also participate in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian caspase-2 and caspase-9 has a CARD domain that is essential for its interaction with the scaffolding protein Dark to form the apoptosome. Apoptosome formation is crucial for activation of Dronc. Activity of both initiator and effector caspases are further kept in control by the ubiquitin system to avoid inappropriate caspase activity. However, mechanistic details of how the ubiquitin system regulates activation of Dronc are not clear. Therefore, I investigated the ubiquitylation status of Dronc and its function in Drosophila. I found that Dronc is mono-ubiquitylated at Lys78 (K78) in its CARD domain, which blocks its interaction with Dark and formation of the apoptosome. Furthermore, I demonstrated that K78 mono-ubiquitylation plays an inhibitory role in Dronc’s non-apoptotic functions, which may not require its catalytic activity but may be important for the survival of the fly. This thesis study unveils the link between the ubiquitin system and caspases through a regulatory mechanism where a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
|
134 |
L'Effet " Modifications Post-Traductionnelles" : petits groupements chimiques, grandes conséquences? Caractérisation de protéines modifiées chez Pseudomonas aeruginosa PA14 par analyse protéomique. / "Post-translational modifications" effect : small chemical groups, influencial consequences? Characterization of modified proteins in Pseudomonas aeruginosa PA14 by proteomic analysis.Gaviard, Charlotte 18 December 2018 (has links)
Pseudomonas aeruginosa PA14 est une bactérie pathogène très résistante aux antibiotiques et impliquée dans de nombreuses infections nosocomiales. Toutefois, la disponibilité d'agents antibactériens efficaces contre cette bactérie manque cruellement à ce jour. Explorer la physiologie de P. aeruginosa au niveau des modifications post-traductionnelles (PTMs) pourrait fortement contribuer au développement de nouveaux agents thérapeutiques. En effet, il a été montré certaines corrélations entre les PTMs et la virulence, l’adaptation et la résistance bactérienne. De plus, les progrès récents en protéomique ont permis d’accéder à un nombre croissant des protéines modifiées. Pourtant, leur description reste un véritable challenge.Dans une première partie, nous avons étudié l'impact des kinases et des phosphatases sur la physiologie de P. aeruginosa PA14. Cependant, aucune différence de phénotype n'a été observée entre les 8 mutants de ces enzymes et la souche sauvage.Dans une deuxième partie, nous avons caractérisé le succinylome et l'acétylome de la lysine chez P. aeruginosa PA14 dans quatre sources de carbone (glucose, citrate, succinate et glutamate) par enrichissement par anticorps couplé à la spectrométrie de masse. Ainsi, 1 530 sites succinylés (617 protéines) et 1 109 sites acétylés (526 protéines) ont été identifiés. De façon intéressante, 622 sites (312 protéines) ont été observés acétylés ou succinylés sur la même lysine, révélant ainsi l'existence de protéoformes pour une même protéine. Les protéines modifiées sont impliquées dans tous les processus biologiques. Toutefois, certaines d'entre elles ont des fonctions dans la résistance aux antibiotiques, le chimiotactisme et la virulence.Nous avons également quantifié les peptides succinylés et/ou acétylés dans les 4 sources de carbone. Les peptides succinylés étaient principalement sur-exprimés en citrate, mais aucune différence significative n’a été observée pour les peptides acétylées.Dans une troisième partie, nous avons étudié par immunoprécipitation le succinylome et l’acétylome de la lysine des protéines extracellulaire de P. aeruginosa. Nous avons montré que certaines lysines des protéines LasB et CbpD, deux facteurs de virulence, sont modifiées par 9 PTMs différentes. Une approche d’électrophorèse bi-dimensionnelle (2D) a permis de révéler et de quantifier les protéoformes des protéines extracellulaires et plus spécifiquement de ces facteurs de virulence.Dans une quatrième partie, une approche quantitative « label-free » a permis de mettre en avant 581 protéines qui varient différemment selon la source de carbone. Parmi ces protéines, 67 biomarqueurs ont été identifiés par approche statistique.Ces travaux constituent un point de départ prometteur pour de futures études sur le rôle de la succinylation de la lysine et d'autres PTMs chez P. aeruginosa. / Pseudomonas aeruginosa PA14 is a multi-drug resistant human pathogen largely involved in nosocomial infections. Unfortunately, today, effective antibacterial agents lacked. Explore its physiology at the post-translational modification (PTMs) level may contribute to the renewal of combat tactics. Indeed, some correlations between PTMs and the bacterial virulence, adaptation and resistance have been shown. The recent improvements in proteomics have increased the number of modified proteins. However, their characterization believes a real challenge.In the first part, we focused on the impact of kinases and phosphatases on bacterial physiology of P. aeruginosa PA14. For this purpose, we compared different phenotypes of 8 mutants of kinase and phosphatase with the WT strain. Unfortunately, no difference was observed.In the second part, we characterized the lysine succinylome and acetylome in P. aeruginosa PA14 in 4 carbon sources (glucose, citrate, succinate and glutamate) by mass spectrometry. Overall, a total of 1 530 succinylated sites (617 proteins) and 1 109 acetylated sites (526 proteins) were identified. Interestingly, we noticed that 622 sites (312 proteins) can be either acetylated or succinylated on the same lysine. This reveals the existence of proteoforms for a same protein. As expected, many modified proteins are involved in a wide range of biological processes but some of these proteins have interesting functions like antibiotic resistance, chemotaxis and virulence.We also tried to quantify succinylated and/or acetylated peptides in the 4 carbon sources. Succinylated peptides were mainly over-represented in the citrate condition whereas no significant difference was observed for the acetylated forms.In the third part, we investigated the lysine succinylome and acetylome of P. aeruginosa in extracellular compartment by immunoprecipitation. We showed that some lysines of two virulence factors, LasB and CbpD, were modified by 9 different PTMs. We also used a 2-dimensional gel approach to reveal and quantify proteoforms of extracellular proteins and more specifically virulence factors. In the fourth part, we did a label-free quantitative approach to obtain protein abundance in each carbon source. In total, 581 proteins vary differently depending on the carbon source. Among these proteins, 67 biomarkers were identified by statistical approach.This work is a promising starting point for further investigations on the biological role of lysine succinylation, and others PTMs, in P. aeruginosa.
|
135 |
Next-generation Protein Sequencing (NGPS) For Determining Complete Sequences for Unknown Proteins and AntibodiesHoward, Alexis S. 01 January 2021 (has links)
Next-Generation protein sequencing (NGPS) creates newfound ways of fully identifying every protein species in a single biological organism. It is an effort to use technology to determine proteomic data. The purpose of this research project is to use the current technology to sequence proteins and potentially find treatments for some diseases that are common today. Through NGPS, scientists can identify low abundant proteins including those that go through post-translational modifications (PTM) [1]. NGPS will allow us to fully determine protein sequences from protein samples using mass spectrometry with the ultimate goal of being able to determine the primary sequence of the protein in the given sample [1]. Antibodies are a specific class of proteins that aid our bodies in the immune response. Due to their variability in the complementary-determining region (CDR), NGPS will be used to determine the heavy and light chain sequences [2]. The goal of this technology is to fully determine the primary sequence of a protein in a given sample. The randomness of an antibody’s variable (V), diversity (D), and joining (J) genes (VDJ recombination) makes each protein unique. VDJ recombination refers to the process of T cells and B cells randomly assembling different gene segments. This process allows the antibody to make specific receptors that can recognize different molecules presented on the surface of antigens. Proteases are enzymes that break down proteins and peptides. By using different proteases with varying cutting rules, we can digest the antibody and run it through high mass accuracy determining instrument [1]. NGPS allows us to utilize mass spectrometry technology to measure proteins or polypeptides. Because of these measurements, post-translation modifications, including glycosylation, can be detected, unlike in DNA sequencing technology. Protein sequencing has the opportunity to play a major role in the fight against the COVID-19 outbreak and serve as curative measures for the treatment and Type 2 Diabetes [3]. Proteomics can serve as the basis of vaccine development as well as monitoring treatment. Utilizing techniques such as mass spectrometry could reveal the structure of the virus and ultimately allow for engineered tissues to produce the protein in large amounts in a lab setting. Currently, many companies are utilizing highly sensitized technology to carry out the goals of NGPS. The Oxford Nanopore is a company that uses technology to develop and explore more ways to undergo protein analysis. The methods used by this company involve using protein nanopores to mutate residues in pores to determine the overall sequence. The company utilizes modified aptamers that are drawn to the nanopore current. These aptamers can bind with some, but not all pores, allowing for the differentiation between target and non-target proteins. Nicoya Life Sciences is another company that uses Open Surface Plasmon Resonance (SPR) to detect molecular interactions. SPR uses an analyte (a mobile molecule) to bind to a ligand and observe changes in the refractive index. SPR allows researchers the ability to characterize the binding kinetics and affinities of monoclonal antibodies. SPR is an extremely promising technique to sequence proteins due to its flexibility in being able to work with a variety of molecules including lipids, nucleic acids, cells, viruses, nanoparticles, proteins, antibodies, carbohydrates, and more. The original goal behind NGPS was to establish a method to sequence proteins to aid in the early detection of common diseases such as Type 2 Diabetes. After significant research, it is now known that NGPS can be done in a variety of ways to accomplish a common goal—sequencing proteins and understanding how amino acids affect the human body. In the case of diseased states, NGPS can help researchers find ways to diagnose, treat, and cure diseases early on. Focusing on antibodies allows us to manipulate the body’s immune response to rid the host of pathogens. NGPS, however, is advancing at a much slower rate than anticipated by companies due to its many limitations including not being able to sequence large peptides, difficulties in material and composition of the sample, and needing to label small peptides to begin degradation. Ideally, finding a way to combine the high accuracy and specificity of certain techniques, the ability to detect low abundant proteins in others, and the flexibility of Open SPR would allow researchers and companies to create the standard for NGPS. Creating effective antibodies is precisely why NGPS has such great potential today. Ultimately, I found that as a standalone, Open SPR is the most effective method. However, as the research shows, there are limitations with each method, including Open SPR. The conclusion shows that it is necessary to find a combination of these techniques and create an accurate method, potentially using different technologies, to establish the most effective way to sequence proteins.
|
136 |
MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME-OF-FLIGHT MASS SPECTROMETRY OF BACTERIAL RIBOSOMAL PROTEINS AND RIBOSOMESSUH, MOO-JIN 27 May 2005 (has links)
No description available.
|
137 |
Lysine Acetylation and Small Molecule Epigenetic Inhibition Reveal Novel Mechanisms Controlling Cellular Susceptibility to HIV-1 InfectionLucera, Mark B. 27 January 2016 (has links)
No description available.
|
138 |
The Influence of DNA Sequence and Post Translational Modifications on Nucleosome Positioning and StabilityMooney, Alex M. 20 December 2012 (has links)
No description available.
|
139 |
Expanding the Genetic Code of Mammalian Cells to Probe and Manipulate Protein Function:Osgood, Arianna January 2024 (has links)
Thesis advisor: Abhishek Chatterjee / The study of protein structure and function has advanced significantly with the development of genetic code expansion (GCE) technology for the incorporation of noncanonical amino acids (ncAAs), revolutionizing synthetic biology by enabling the introduction of novel functionalities into proteins. Within eukaryotic systems, these advancements have paved the way for deeper investigations into complex protein functions critical to human biology and have spurred the development of innovative biotherapeutic solutions.The work described within this dissertation has aimed to further advance various applications of mammalian GCE. This includes the construction of next-generation homogenous antibody-drug conjugates (ADCs) both using a genetically encoded photocaged cysteine and with a dual incorporation system for the construction of a dual-drug conjugate. Multiple new platforms were developed for the incorporation of two or even three ncAAs within a single protein, utilizing a novel aaRS/tRNA pair and evolved hyper-efficient tRNAs. GCE-enabled precise protein modification was also utilized to spectroscopically study the conformational dynamics of dimeric EGFR. Additionally, platforms were established for the precise installation of post-translational modification (PTM) mimics within mammalian proteins, allowing for their programmed activation. Finally, an innovative strategy for the study of protein-protein interactions using genetically encoded photocrosslinkers was developed. Collectively, these efforts have contributed to the development of novel tools for studying protein function in mammalian cells and advancing the creation of new biotherapeutics through GCE technology. / Thesis (PhD) — Boston College, 2024. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
140 |
Developing inhibitors of bromodomain-histone interactionsHewings, David Stephen January 2014 (has links)
Lysine acetylation is a widespread protein post-translational modification that influences diverse cellular processes. An association between acetylation of histone N-terminal tails and transcriptional activation has been recognised since the 1960s. However, it has only become apparent since 2000 that many of the effects of histone acetylation are mediated by proteins that bind to acetyl-lysine through a specialised acetyl-lysine recognition domain, the bromodomain. Small-molecule inhibitors of bromodomain-histone interactions can greatly assist studies into the functions of bromodomain-containing proteins, and show promise as treatments for several diseases, including cancers. Herein I describe the discovery and development of a novel chemical series of bromodomain-binding ligands containing the 3,5-dimethyisoxazole moiety. This heterocycle acts as an acetyl-lysine bioisostere, mimicking key interactions formed between acetyl-lysine and the bromodomain. Optimised compounds show sub-micromolar affinities for bromodomains of the BET family, a class of transcriptional co-regulators. Crystallographic and structure-activity relationship studies shed light on the structural requirements for potent and selective BET ligands. Furthermore, the compounds show cellular effects consistent with BET bromodomain inhibition: cytotoxicity studies in a range of cell lines, including the NCI-60 human tumour cell line screen, reveal differential activity, with leukaemias showing particular sensitivity. 3,5-Dimethylisoxazole-containing compounds were also shown to downregulate known BET target genes. Further studies investigated the effect of modifying or replacing the methyl groups of 3,5-dimethylisoxazole on BET bromodomain affinity, which indicated that the 3-methyl group is necessary for affinity. Finally, three novel isoxazole-containing amino acids were synthesised and incorporated into histone peptides as potential bromodomain-binding, non-hydrolysable, acetyl-lysine mimics. These amino acids might be useful in uncovering the function of individual acetylated lysine residues. The identification of methyl-isoxazoles as acetyl-lysine-mimetic bromodomain ligands represents a significant advance in our understanding of structure-activity relationships for these important proteins. The confirmed cellular activity of these compounds will enable their use in future biological studies.
|
Page generated in 0.1055 seconds