• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 408
  • 215
  • 114
  • 17
  • 13
  • 10
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1022
  • 1022
  • 308
  • 293
  • 230
  • 229
  • 223
  • 181
  • 166
  • 136
  • 119
  • 112
  • 112
  • 105
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development of an equivalent circuit of a large power system for real- time security assessment

Wijeweera, Don Gayan Prabath 14 November 2016 (has links)
More and more system operators are interested in calculating transfer capability in real-time using real-time power flow models generated from the Energy Management System (EMS). However, compared to off-line study models, EMS models usually cover only a limited portion of the interconnected system. In most situations, it is not practical to extend the EMS model to capture the impact of the external systems and therefore using an equivalent network becomes necessary. The development of equivalent circuits to represent external areas was a topic discussed over the last 50 years. Almost all of these methods require impedance information about the external area to develop the equivalent circuit. Unfortunately utilities do not have the external impedance information in the real-time. Therefore, normal industry practice is to use off-line studies to develop an equivalent circuit and use that circuit in the real-time operation without any validation. This can result in errors in the security assessment. Therefore, power industry need a method to develop or validate an equivalent circuit based on the available real-time information. This thesis work is focussed on meeting that industry need. The work on this thesis presents two new methods that can be used to generate an equivalent circuit based on the boundary conditions. This method involves calculating equivalent impedance between two areas based on the boundary stations voltages, voltage angles and power leaving the boundary stations into external areas. This thesis uses power system simulation between two areas to change the system condition to obtain different boundary bus voltages, voltage angles and power injections to generate necessary data. Regression analysis and least square method is then used to generate the equivalent circuit using these data. It is expected that system changes will provide necessary information in the real-time to generate the equivalent circuit. The proposed methodology is validated with modified three area 300 bus system as well as using Manitoba Hydro’s system. Contingency analysis, transfer level calcula-tion and PV curves analysis is used to validate the proposed method. Simulation results show that the proposed method produces adequate accuracy in comparison with detailed off-line system models. The main advantage of the proposed method as compared to other existing meth-ods such as Ward and REI is that the proposed method does not require external imped-ance information to generate the equivalent circuit. The ability to generate reasonably good equivalent circuit only using available boundary information will help utilities to generate or validate the equivalent circuit based on the current system conditions, which will intern help improve the accuracy of the security assessment / February 2017
52

Efficient Simulation Methods of Large Power Systems with High Penetration of Renewable Energy Resources : Theory and Applications

Shayesteh, Ebrahim January 2015 (has links)
Electrical energy is one of the most common forms of energy these days. Consequently, electric power system is an indispensable part of any society. However, due to the deregulation of electricity markets and the growth in the share of power generation by uncontrollable renewable energies such as wind and solar, power system simulations are more challenging than earlier. Thus, new techniques for simplifying these simulations are needed. One important example of such simplification techniques is the power system reduction. Power system reduction can be used at least for four different purposes: a) Simplifying the power system simulations, b) Reducing the computational complexity, c) Compensating the data unavailability, and d) Reducing the existing uncertainty. Due to such reasons, power system reduction is an important and necessary subject, but a challenging task to do. Power system reduction is even more essential when system operators are facing very large-scale power systems and when the renewable energy resources like hydro, wind, and solar have a high share in power generation. This thesis focuses on the topic of large-scale power system reduction with high penetration of renewable energy resources and tries to pursue the following goals: • The thesis first reviews the different methods which can be used for simplifying the power system studies, including the power system reduction. A comparison among three important simplification techniques is also performed to reveal which simplification results in less error and more simulation time decrement. • Secondly, different steps and methods for power system reduction, including network aggregation and generation aggregation, are introduced, described and discussed. • Some improvements regarding the subject of power system reduction, i.e. on both network aggregation and generation aggregation, are developed. • Finally, power system reduction is applied to some power system problems and the results of these applications are evaluated. A general conclusion is that using power system simplification techniques and specially the system reduction can provides many important advantages in studying large-scale power systems with high share of renewable energy generations. In most of applications, not only the power system reduction highly reduces the complexity of the power system study under consideration, but it also results in small errors. Therefore, it can be used as an efficient method for dealing with current bulk power systems with huge amounts of renewable and distributed generations. / <p>The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20150116</p>
53

Short-circuit currents in wind-turbine generator networks

Howard, Dustin F. 13 January 2014 (has links)
Protection of both the wind plant and the interconnecting transmission system during short-circuit faults is imperative for maintaining system structural integrity and reliability. The circuit breakers and protective relays used to protect the power system during such events are designed based upon calculations of the current that will flow in the circuit during the fault. Sequence-network models of various power-system components, such as synchronous generators, transformers, transmission lines, etc., are often used to perform these calculations. However, there are no such models widely accepted for certain types of wind-turbine generators used in modern wind plants. The problem with developing sequence-network models of wind plants is that several different wind-turbine generator designs exist; yet, each exhibit very different short-circuit behavior. Therefore, a “one size fits all” approach is not appropriate for modeling wind plants, as has been the case for conventional power plants based on synchronous-generator technology. Further, many of the newer wind-turbine designs contain proprietary controls that affect the short-circuit behavior, and wind-turbine manufacturers are often not willing to disclose these controls. Thus, protection engineers do not have a standard or other well-established model for calculating short-circuit currents in power systems with wind plants. Therefore, the research described in this dissertation involves the development of such models for calculating short-circuit currents from wind-turbine generators. The focus of this dissertation is on the four existing wind-turbine generator designs (identified as Types 1 – 4). Only AC-transmission-interconnected wind-turbine generators are considered in this dissertation. The primary objective of this research is the development of sequence-network models, which are frequency-domain analysis tools, for each wind-turbine generator design. The time-domain behavior of each wind-turbine generator is thoroughly analyzed through transient simulations, experimental tests on scaled wind-turbine generator test beds, and solutions to the system dynamic equations. These time-domain analyses are used to support the development of the sequence-network models.
54

Robust Corrective Topology Control for System Reliability and Renewable Integration

January 2015 (has links)
abstract: Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration. This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states. Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility. The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
55

Carbon dioxide emissions modelling in a power system model: : A case study of Germany and Poland

Choli, Marcelina January 2019 (has links)
This study aims to build a method for validating a power system model in the PLEXOS software. Special emphasis is put on the carbon dioxide emissions modelling. A case study of Germany and Poland is formulated in order to apply the created procedure to a European power model. The verification of emissions being one of the outputs, is divided into two phases. The first one focuses on the historical results from 2016-2017, which are compared with the chosen reference statistics and the emissions results obtained in another optimization tool. The second phase looks into the trends of emissions in the near future, i.e. time period between 2019-2025. OSeMOSYS as the second piece of software is used for benchmarking the results obtained by the PLEXOS model.
56

Analysis of Electric Disturbances from the Static Frequency Converter of a Pumped Storage Station

Rosado, Sebastian Pedro 12 August 2001 (has links)
The present work studies the disturbances created in the electric system of a pumped storage power plant, which is an hydraulic generation facility where the machines can work as turbines or pumps, by the operation of a static frequency converter (SFC). The SFC is used for starting the synchronous machines at the station when in the pump mode. During the starting process several equipment is connected to the SFC being possible to get affected by the disturbances generated. These disturbances mainly include the creation of transient overvoltages during the commutation of the semiconductor devices of the SFC and the introduction of harmonics in the network currents and voltages. This work analyzes the possible effects of the SFC operation over the station equipment based on computer simulations. For this purpose, the complete system was modeled and the starting process simulated in a computer transient simulator program. The work begins with a general review of the effects of electric disturbances over high voltage equipment and in particular of the disturbances generated by power electronics conversion equipment. Then the models for the different kind of equipment present in the system are discussed and formulated. The control system that governs the operation of the SFC during the starting process is analyzed later as well as the operation conditions. Once the model of the system is set up, the harmonic analysis of the electric network is done by frequency domain and time domain methods. Time domain methods are also employed for the analysis of the commutation transient produced by the SFC operation. Finally, the simulation results are used to evaluate the impact of the SFC operation on the station equipment, especially on the generator step up transformer. / Master of Science
57

Steady state load models for power system analysis

Cresswell, Charles January 2009 (has links)
The last full review of load models used for power system studies occurred in the 1980s. Since then, new types of loads have been introduced and system load mix has changed considerably. The examples of newly introduced loads include drive-controlled motors, low energy consumption light sources and other modern power electronic loads. Their numbers have been steadily increasing in recent years, a trend which is expected to escalate. Accordingly, the majority of load models used in traditional power system studies are becoming outdated, as they are unable to accurately represent power demand characteristics of existing and future loads. Therefore, in order to accurately predict both active and non-active power demand characteristics of aggregated modern power system loads in different load sectors (e.g. residential, commercial or industrial), existing load models should be updated and new models developed. This thesis aims to fill this gap by developing individual, generic and aggregated steady state models of the most common loads in use today, as well as of those expected to show significant growth in the future. The component-based approach is adopted for load modelling, where individual load models are obtained in detailed simulations of physical devices. Whenever possible, the developed individual load models are validated by measurements. These detailed individual load models are then simplified and expressed as equivalent circuit and analytical models, which allowed the establishment of generic load models that can be easily aggregated. It should be noted that since all non-active power characteristics are correctly represented, the developed aggregated load models allow for a full harmonic analysis, which is not the case with the standard steady state load models. Therefore, the proposed load models form an extensive library of comprehensive load models that are suitable for use in multiple areas of power system research. Based on the results of research related to typical domestic/residential sector load mix, the newly developed load models are aggregated and then applied to a typical UK/Scotland distribution network. Considerable differences are seen between network characteristics of newly proposed and previously developed models. The voltage distortion of a typical distribution system bus is investigated, and it is shown that distortion of the system voltage is likely to increase significantly in the future. The results of the presented research also suggest that neglecting the harmonic characteristics from the set of general load attributes may introduce errors in standard load flow studies.
58

Protection and communication for a 230 kV transmission line using a pilot overreaching transfer tripping (POTT) scheme

Escalante De Leon, Lazaro Samuel January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Noel Schulz / New applications are continuously emerging in the ever-changing field of power systems in the United States and throughout the world, consequently causing new pressures on grid performance. Because power system protection is a fundamental aspect of the system, their operation must be addressed when a system is under high stress or when a high demand of energy is required. An extreme example is the transmission protection of a system because it transports large amounts of power. Transmission lines in a power system are frequently exposed to faults and generally protected by distance relays. If a faulted segment of transmission lines is not cleared in a short period of time, the system becomes unstable. The basic function of distance protection is to detect faults in buses, transmission lines, or substations and isolate them based on voltage and current measurements. Power system protection has previously focused on matching automation and control technologies to system performance needs. This report focuses on project activities that run simulations to determine settings for a protective relay for pilot overreaching transfer tripping and then test the settings using hardware equipment for various scenarios. The first set of scenarios consists of five faults in the system; two faults are in the protected line, and the remaining faults are outside the protective line. The second set of scenarios consists of instrument transformer failures in which the current transformer (CT) of one relay fails to operate while the other relay is fully operational. The second scenario consists of a failure of the voltage transformer (VT) of one relay while the other relay remains fully operational. Finally, the third and fourth scenarios consist of the failure of both CTs and VTs for each relay.
59

A robust wide area measurement based controller for networks with embedded HVDC links

Agnihotri, Prashant 12 August 2016 (has links)
The advent of Wide-Area measurement Systems has spurred interest in the use of non-local feedback signals for power swing damping control. Although damping can be improved through generator excitation systems, dc links and other grid connected power electronic converters, the full potential of wide-area measurements can be realized by coordinating the strategies used for multiple controllable devices in a grid. These strategies also need to be robust to partial or complete loss of communication, changes in operating points, topology and equipment outages, improve damping of all the controllable swing modes, and have adequate stability margins to avoid destabilization of untargeted modes. This thesis investigates a control strategy for multi-infeed and multi-terminal (also referred to as multiple embedded dc links in this thesis) dc links using local frequency difference signals as well as the frequency difference signals obtained from other dc links. This strategy combines the advantages of the local frequency difference signal with the additional degrees of freedom provided by the use of non-local frequency difference signals, to achieve targeted and enhanced swing mode damping for the poorly damped modes. Since the strategy uses only a limited set of non-local signals, the signals may be directly communicated to the dc links without having to be centrally collated with other system-wide measurements. The key aspect of the proposed strategy is the use of a symmetric positive definite (spd) gain matrix. This results in enhanced damping for all controllable swing modes. Furthermore, loss of communication between the dc links does not destroy the symmetric positive definiteness and the gain elements can be tuned to selectively enhance damping of poorly damped modes. Eigenvalue sensitivity analysis and case studies on a 3 machine 9 bus and 16 machine 68 bus system with multiple HVDC links are presented to demonstrate the key attributes and the effectiveness of this strategy. / October 2016
60

Multi-Mode Damping of Power System Oscillations

Palmer, Edward Walter January 1998 (has links)
In maintaining power system stability; especially that of large interconnected systems, in the face of large disturbances it is desirable to have a non-linear control technique that is simple and inexpensive to implement. This thesis presents a non-linear control technique which relies on angle measurements taken at strategic points in the power system with the aid of the G.P.S. ( Global Positioning System ) timing signal. A method for estimating these bus angles which is faster than previous methods is developed as well as a technique for choosing the locations of these transducers. This transducer placement algorithm aims to place transducers at locations whose bus voltage response to the less well damped inter-area modes is maximised and whose response to the better damped local modes is minimised. Since the control techniques are based on aggregated classical models of coherent generators it is important to be able to estimate the internal voltages of these aggregate machines. The placement algorithm ensures maximally precise angle estimates in the presence of noise by minimising the condition number of the observation matrix relating transducer bus voltages to internal aggregated machine voltages. The non-linear control techniques presented rely on an energy function developed in this thesis which is based on the physical circuit energy of the system. One technique; the Direct Energy technique looks at maximising the negativity of the time rate of change of the energy function, assuming that the energy function is positive during the time frame of interest. It is shown that should the number of controllers be less than the number of modes, excluding the centre of area mode, then sustained oscillations appear which will only be damped by the natural damping of the system. This may be overcome by using techniques which rely on reducing the entire system energy over the time frame of interest. These so-called Lookahead techniques can rely on higher order time derivatives of the energy function or on co-states, the latter being the principal focus of this thesis. The Lookahead control technique developed is based on co-states which are estimated by the using the solution to the time independent Ricatti equation for a LQ model of the system. It is shown to produce good damping in a number of case studies. Furthermore it is shown to perform well in the presence of both static and dynamic load models. Also it is shown that the path dependent terms introduce some ambiguity as to whether or not the system will converge to a stable equilibrium point. It is shown that it is possible to put a bound on the region to which the power system can be assured to converge. Furthermore the addition of the above-mentioned control strategies has the effect of overcoming the effect of the path dependent terms and, should the control action be strong enough, completely swamping them and ensuring system convergence to a stable operating point. In any case the energy function could be directly monitored since all the data needed is being collected anyway for control purposes. / PhD Doctorate

Page generated in 0.0749 seconds