Spelling suggestions: "subject:"préformage"" "subject:"réformage""
11 |
Modélisation et optimisation numérique de l'étape de chauffage infrarouge pour la fabrication de bouteilles en PET par injection-soufflageBordival, Maxime 06 July 2009 (has links) (PDF)
Lors de la fabrication d'une bouteille par injection-soufflage, le conditionnement thermique de la préforme joue un rôle essentiel. Nous proposons une procédure d'optimisation numérique permettant de calculer automatiquement les paramètres de réglage du four infrarouge. Dans un premier temps, l'algorithme d'optimisation de Nelder-Mead est couplé avec des simulations éléments finis de l'étape de soufflage, réalisées avec ABAQUS®. L'objectif est de calculer la distribution de température optimale de la préforme, permettant d'uniformiser l'épaisseur de la bouteille. Dans un second temps, un algorithme de programmation quadratique séquentielle est couplé avec un modèle numérique de chauffage infrarouge 3D développé au laboratoire. Cette méthode permet de calculer les paramètres optimaux pour le réglage du four. Des mesures expérimentales réalisées sur une machine de soufflage semi-industrielle ont permis de valider qualitativement notre approche pour une bouteille de géométrie simple. Les propriétés radiatives du PET sont mesurées par spectrométrie infrarouge. Ces mesures sont exploitées pour calculer l'absorption spectrale du rayonnement. Le modèle de chauffage est validé à l'aide de mesures thermographiques. Un capteur a été développé pour mesurer la résistance thermique de contact entre le polymère et le moule. Le débit d'air injecté dans la préforme a été mesuré, puis appliqué en tant de donnée d'entrée. La pression de soufflage est alors automatiquement calculée à chaque itération par un modèle thermodynamique. Les cinématiques de mise en forme, ainsi que les distributions d'épaisseurs calculées par le modèle sont conformes à celles mesurées sur un pilote de laboratoire.
|
12 |
Etude de déformabilité de tresses en cours de préformage pour la fabrication de composite par le procédé RTM / Braid deformability during preforming for composite manufacture by RTM processCordier Telmar, Aurélie 07 December 2012 (has links)
Cette thèse traite la fabrication de pièces composites par le procédé « Resin Transert Molding » (RTM), appliquée à des tubes de protections thermiques assemblées dans des propulseurs de systèmes d’armes. Ces travaux ont pour objectif de démontrer la faisabilité d’utilisation de ce procédé pour la fabrication de ces pièces complexes. C’est le préformage, première étape du procédé de fabrication par RTM, qui est étudié dans le cadre de cette thèse. Cette étape est cruciale du point de vue de la faisabilité de l’étape d’injection qui la suit dans le procédé RTM mais aussi pour s’assurer de la qualité de la pièce composite finale obtenue. L’objectif des travaux de thèse est triple. Il faut tout d’abord développer le protocole de fabrication répétable adapté pour garantir l’obtention de préformes conformes. Ce protocole devra être viable du point de vue industriel. Pour cela, une démarche expérimentale a été mise en place. Un pilote de laboratoire puis un pilote industriel ont permis de comprendre et maitriser les phénomènes survenant en cours de préformage en faisant varier les paramètres procédé pour la fabrication de nombreux prototypes. Un modèle macroscopique prédictif de la forme globale des plis obtenus à partir des paramètres procédés a été développé à l’aide des observations expérimentales. Un modèle mésoscopique, à l’échelle de la maille élémentaire, a été écrit également. Il permet de prédire, à partir des données constitutives du matériau et d’une géométrie de pièce, la déformation de compaction et de cisaillement, modes de sollicitations prépondérants en cours de préformage, subie par le renfort en cours de la première étape du procédé de fabrication. Ces modèles mésoscopique et macroscopique couplés permettent le développement d’un outil global qui, de manière théorique et prédictive, assure la faisabilité d’une pièce de géométrie connue avec un matériau connu et fournit les paramètres « procédé » optimum pour assurer sa fabrication future. Les phénomènes de déformation en cisaillement et compaction apparaissant sur la tresse en cours de préformage sont donc identifiés et connus. Le procédé de fabrication est optimisé et l’outil prédictif permet d’envisager et tester en amont un changement de matériau, de géométrie de pièce à fabriquer ou de cahier descharges industriel. / This study deals with the manufacture of composite parts by the process "Resin Transert Molding" (RTM), applied to thermal protection tubes. This work aims to demonstrate the feasibility of using this method for the production of these complex parts. This study deals with the first step of the RTM process, the fiber performing. This is critical from the standpoint of the feasibility of injecting step that follows in the RTM process but also to ensure the quality of the final composite part obtained. The aim of the thesis is threefold. Must first develop the manufacturing protocol adapted to ensure repeatable obtaining preforms compliant. This protocol should be viable to the industrial point of view. For this purpose, an experimental approach was implemented. A pilot laboratory and an industrial pilot helped to understand and master the phenomena occurring during forming varying the process parameters for the production of many prototypes. A macroscopic model predictive of overall shape folds obtained from the process parameters has been developed with the experimental observations. A mesoscopic model, the scale of the unit cell was also writing. It can predict, based on the specifications of the material and part geometry, the deformation of compaction and shear stresses. These models mesoscopic and macroscopic allow the development of a global tool that, theoretically predictive and ensures the feasibility of a piece of known geometry with a known material parameters and provides the "process" to ensure its optimum manufacturing future. The phenomena of compaction and shear strain appearing on the braid during preforming are identified and known. The manufacturing process is optimized and the predictive tool allows to explore and test upstream change of material, part geometry in manufacturing or industrial specifications.
|
13 |
Simulation à l'échelle mésoscopique de la mise en forme de renforts de composites tissésWendling, Audrey 04 September 2013 (has links) (PDF)
De nos jours, l'intégration de pièces composites dans les produits intéresse de plus en plus les industriels, particulièrement dans le domaine des transports. En effet, ces matériaux présentent de nombreux avantages, notamment celui de permettre une diminution de la masse des pièces lorsqu'ils sont correctement exploités. Pour concevoir ces pièces, plusieurs procédés peuvent être utilisés, parmi lesquels le RTM (Resin Transfer Molding) qui consiste en la mise en forme d'un renfort sec (préformage) avant une étape d'injection de résine. Cette étude concerne la première étape du procédé RTM, celle de préformage. L'objectif est de mettre en œuvre une stratégie efficace conduisant à la simulation par éléments finis de la mise en forme des renforts à l'échelle mésoscopique. A cette échelle, le renfort fibreux est modélisé par un enchevêtrement de mèches supposées homogènes. Plusieurs étapes sont alors nécessaires et donc étudiées ici pour atteindre cet objectif. La première consiste à créer un modèle géométrique 3D le plus réaliste possible des cellules élémentaires des renforts considérés. Elle est réalisée grâce à la mise en œuvre d'une stratégie itérative basée sur deux propriétés. D'une part, la cohérence, qui permet d'assurer une bonne description du contact entre les mèches, c'est-à-dire, que le modèle ne contient ni vides ni interpénétrations au niveau de la zone de contact. D'autre part, la variation de la forme des sections de la mèche le long de sa trajectoire qui permet de coller au mieux à la géométrie évolutive des mèches dans le renfort. Grâce à ce modèle et à une définition libre par l'utilisateur de l'architecture tissée, un modèle représentatif de tout type de renfort (2D, interlock) peut être obtenu. La seconde étape consiste à créer un maillage hexaédrique 3D cohérant de ces cellules élémentaires. Basé sur la géométrie obtenue à la première étape. L'outil de maillage créé permet de mailler automatiquement tout type de mèche, quelle que soit sa trajectoire et la forme de ses sections. La troisième étape à franchir consiste, à partir du comportement mécanique du matériau constitutif des fibres et de la structure de la mèche, à mettre en place une loi de comportement du matériau homogène équivalent à un matériau fibreux. Basé sur les récents développements expérimentaux et numériques en matière de loi de comportement de structures fibreuses, un nouveau modèle de comportement est présenté et implémenté. Enfin, une étude des différents paramètres intervenant dans les calculs en dynamique explicite est réalisée. Ces deux derniers points permettent à la fois de faire converger rapidement les calculs et de se rapprocher de la réalité de la déformation des renforts. L'ensemble de la chaîne de modélisation/simulation des renforts fibreux à l'échelle mésoscopique ainsi créée est validée par comparaison d'essais numériques et expérimentaux de renforts sous sollicitations simples.
|
14 |
Simulation à l'échelle mésoscopique de la mise en forme de renforts de composites tissés / Mesoscopic simulation of weaving composite reinforcements formingWendling, Audrey 04 September 2013 (has links)
De nos jours, l’intégration de pièces composites dans les produits intéresse de plus en plus les industriels, particulièrement dans le domaine des transports. En effet, ces matériaux présentent de nombreux avantages, notamment celui de permettre une diminution de la masse des pièces lorsqu’ils sont correctement exploités. Pour concevoir ces pièces, plusieurs procédés peuvent être utilisés, parmi lesquels le RTM (Resin Transfer Molding) qui consiste en la mise en forme d’un renfort sec (préformage) avant une étape d’injection de résine. Cette étude concerne la première étape du procédé RTM, celle de préformage. L’objectif est de mettre en œuvre une stratégie efficace conduisant à la simulation par éléments finis de la mise en forme des renforts à l’échelle mésoscopique. A cette échelle, le renfort fibreux est modélisé par un enchevêtrement de mèches supposées homogènes. Plusieurs étapes sont alors nécessaires et donc étudiées ici pour atteindre cet objectif. La première consiste à créer un modèle géométrique 3D le plus réaliste possible des cellules élémentaires des renforts considérés. Elle est réalisée grâce à la mise en œuvre d’une stratégie itérative basée sur deux propriétés. D’une part, la cohérence, qui permet d’assurer une bonne description du contact entre les mèches, c'est-à-dire, que le modèle ne contient ni vides ni interpénétrations au niveau de la zone de contact. D’autre part, la variation de la forme des sections de la mèche le long de sa trajectoire qui permet de coller au mieux à la géométrie évolutive des mèches dans le renfort. Grâce à ce modèle et à une définition libre par l’utilisateur de l’architecture tissée, un modèle représentatif de tout type de renfort (2D, interlock) peut être obtenu. La seconde étape consiste à créer un maillage hexaédrique 3D cohérant de ces cellules élémentaires. Basé sur la géométrie obtenue à la première étape. L’outil de maillage créé permet de mailler automatiquement tout type de mèche, quelle que soit sa trajectoire et la forme de ses sections. La troisième étape à franchir consiste, à partir du comportement mécanique du matériau constitutif des fibres et de la structure de la mèche, à mettre en place une loi de comportement du matériau homogène équivalent à un matériau fibreux. Basé sur les récents développements expérimentaux et numériques en matière de loi de comportement de structures fibreuses, un nouveau modèle de comportement est présenté et implémenté. Enfin, une étude des différents paramètres intervenant dans les calculs en dynamique explicite est réalisée. Ces deux derniers points permettent à la fois de faire converger rapidement les calculs et de se rapprocher de la réalité de la déformation des renforts. L’ensemble de la chaîne de modélisation/simulation des renforts fibreux à l’échelle mésoscopique ainsi créée est validée par comparaison d’essais numériques et expérimentaux de renforts sous sollicitations simples. / Nowadays, manufacturers, especially in transport, are increasingly interested in integrating composite parts into their products. These materials have, indeed, many benefits, among which allowing parts mass reduction when properly operated. In order to manufacture these parts, several methods can be used, including the RTM (Resin Transfer Molding) process which consists in forming a dry reinforcement (preform) before a resin being injected. This study deals with the first stage of the RTM process, which is the preforming step. It aims to implement an efficient strategy leading to the finite element simulation of fibrous reinforcements at mesoscopic scale. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous and continuous. Several steps are then necessary and therefore considered here to achieve this goal. The first consists in creating a 3D geometrical model of unit cells as realistic as possible. It is achieved through the implementation of an iterative strategy based on two main properties. On the one hand, consistency, which ensures a good description of the contact between the yarns, that is to say, the model does not contain spurious spaces or interpenetrations at the contact area. On the other hand, the variation of the yarn section shape along its trajectory that enables to stick as much as possible to the evolutive shape of the yarn inside the reinforcement. Using this tool and a woven architecture freely implementable by the user, a model representative of any type of reinforcement (2D, interlock) can be obtained. The second step consists in creating a 3D consistent hexahedral mesh of these unit cells. Based on the geometrical model obtained in the first step, the meshing tool enables to mesh any type of yarn, whatever its trajectory or section shape. The third step consists in establishing a constitutive equation of the homogeneous material equivalent to a fibrous material from the mechanical behavior of the constituent material of fibers and the structure of the yarn. Based on recent experimental and numerical developments in the mechanical behavior of fibrous structures, a new constitutive law is presented and implemented. Finally, a study of the different parameters involved in the dynamic/explicit scheme is performed. These last two points allow both to a quick convergence of the calculations and approach the reality of the deformation of reinforcements. The entire chain modeling/simulation of fibrous reinforcements at mesoscopic scale created is validated by numerical and experimental comparison tests of reinforcements under simple loadings.
|
Page generated in 0.0446 seconds