Spelling suggestions: "subject:"aretrained models"" "subject:"inrestrained models""
1 |
A Quantitative Comparison of Pre-Trained Model Registries to Traditional Software Package RegistriesJason Hunter Jones (18430302) 06 May 2024 (has links)
<p dir="ltr">Software Package Registries are an integral part of the Software Supply Chain, acting as collaborative platforms that unite contributors, users, and packages, and streamline package management processes. Much of the engineering work around reusing packages from these platforms deals with the issue of synthesis, combining multiple packages into a new package or downstream project. Recently, researchers have examined registries that specialize in providing Pre-Trained Models (PTMs), to explore the nuances of the PTM Supply Chain. These works suggest that the main engineering challenge of PTM reuse is not synthesis but selection. However, these findings have been primarily qualitative and lacking quantitative evidence of the observed differences. I therefore evaluate the following hypothesis:</p><p dir="ltr"><i>The prioritization of selection over synthesis in Pre-Trained Model reuse means that the evolution and reuse of Pre-Trained Models differs compared to traditional software. </i><i>The evolution of models will be more linear, and the reuse of models will be more centralized.</i></p>
|
2 |
Predicting the Unpredictable – Using Language Models to Assess Literary QualityWu, Yaru January 2023 (has links)
People read for various purposes like learning specific skills, acquiring foreign languages, and enjoying the pure reading experience, etc. This kind of pure enjoyment may credit to many aspects, such as the aesthetics of languages, the beauty of rhyme, and the entertainment of being surprised by what will happen next, the last of which is typically featured in fictional narratives and is also the main topic of this project. In other words, “good” fiction may be better at entertaining readers by baffling and eluding their expectations whereas “normal” narratives may contain more cliches and ready-made sentences that are easy to predict. Therefore, this project examines whether “good” fiction is less predictable than “normal” fiction, the two of which are predefined as canonized and non-canonized. The predictability can be statistically reflected by the probability of the next words being correctly predicted given the previous content, which is then further measured in the metric of perplexity. Thanks to recent advances in deep learning, language models based on neural networks with billions of parameters can now be trained on terabytes of text to improve their performance in predicting the next unseen texts. Therefore, the generative pre-trained modeling and the text generator are combined to estimate the perplexities of canonized literature and non-canonized literature. Due to the potential risk that the terabytes of text on which the advanced models have been trained may contain book content within the corpus, two series of models are designed to yield non-biased perplexity results, namely the self-trained models and the generative pre-trained Transformer-2 models. The comparisons of these two groups of results set up the final hierarchy of architecture constituted by five models for further experiments. Over the process of perplexity estimation, the perplexity variance can also be generated at the same time, which is then used to denote how predictability varies across sequences with a certain length within each piece of literature. Evaluated by the perplexity variance, the literature property of homogeneity can also be examined between these two groups of literature. The ultimate results from the five models imply that there lie distinctions in both perplexity values and variances between the canonized literature and non-canonized literature. Besides, the canonized literature shows higher perplexity values and variances measured in both median and mean metrics, which denotes that it is less predictable and homogeneous than the non-canonized literature. Obviously, the perplexity values and variances cannot be used to define the literary quality directly. However, they offer some signals that the metric of perplexity can be insightful in the literary quality analysis using natural language processing techniques.
|
3 |
[en] ASSESSMENT OF FINE-TUNING ON END-TO-END SPEECH RECOGNITION MODELS / [pt] AVALIAÇÃO DE AJUSTE FINO EM MODELOS DE PONTA A PONTA PARA RECONHECIMENTO DE FALAJONATAS DOS SANTOS GROSMAN 04 November 2022 (has links)
[pt] Utilizar representações fornecidas por um grande modelo pré-treinado
tornou-se a principal estratégia para alcançar o estado da arte nas mais variadas
tarefas. Um grande modelo pré-treinado recentemente proposto, wav2vec
2.0, foi seminal para vários outros trabalhos sobre pré-treinamento de grandes
modelos em dados de fala. Muitos modelos estão sendo pré-treinados usando a
mesma arquitetura baseada em transformer que o wav2vec 2.0 e estão obtendo
o estado da arte em várias tarefas relacionadas à fala. No entanto, poucos trabalhos
propuseram maiores análises sobre o comportamento desses modelos
em diferentes cenários de fine-tuning. Nosso trabalho visa analisar esse modelo
sobre dois aspectos diferentes. O primeiro é sobre a transferibilidade entre línguas
desses modelos. Nossos experimentos nos mostraram que o tamanho dos
dados usados durante o pré-treinamento desses modelos não é tão crucial para
a transferibilidade quanto a diversidade. Percebemos que o desempenho das
línguas indo-europeias é superior ao das línguas não indo-europeias nos modelos
avaliados. Vimos uma transferência positiva de conhecimento entre línguas
usando modelos monolinguais, o que foi percebido em todos os idiomas que usamos,
mas foi mais evidente quando o idioma usado durante o pré-treinamento
era mais semelhante ao idioma do fine-tuning. O segundo aspecto que investigamos
em nosso trabalho é quão bem esses modelos se comportam em cenários
de desbalanceamento de dados, onde há um subconjunto mais representativo
no conjunto de dados do fine-tuning. Nossos resultados mostraram que o desbalanceamento
dos dados no fine-tuning geralmente afeta o resultado final dos modelos, com melhor desempenho nos subconjuntos mais representativos. No entanto, uma maior variabilidade no conjunto de treinamento favorece o desempenhodo modelo para um subconjunto mais representativo. Porém essamaior variabilidade nos dados não favoreceu os idiomas não vistos durante o treinamento. Observamos também que os modelos parecem mais robustos em lidar com o desbalanceamento de gênero do que idade ou sotaque. Com esses achados, esperamos ajudar a comunidade científica na utilização de modelos pré-treinados existentes, bem como auxiliar no pré-treinamento de novosmodelos. / [en] Using representations given by a large pre-trained model has become
the primary strategy to reach the state-of-the-art in the most varied tasks. A
recently proposed large pre-trained model, wav2vec 2.0, was seminal for several
other works on pre-training large models on speech data. Many models are
being pre-trained using the same transformer-based architecture as wav2vec
2.0 and are getting state-of-the-art in various speech-related tasks. However,
few works have proposed further analysis of these models in different finetuning
scenarios. Our work investigates these models concerning two different
aspects. The first is about the cross-lingual transferability of these models. Our
experiments showed us that the size of data used during the pre-training of
these models is not as crucial to the transferability as the diversity. We noticed
that the performance of Indo-European languages is superior to non-Indo-
European languages in the evaluated models. We have seen a positive crosslingual
transfer of knowledge using monolingual models, which was noticed
in all the languages we used but was more evident when the language used
during the pre-training was more similar to the downstream task language. The
second aspect we investigated in our work is how well these models perform
in data imbalance scenarios, where there is a more representative subset in
the fine-tuning dataset. Our results showed that data imbalance in fine-tuning
generally affects the final result of the models, with better performance in
the most representative subsets. However, greater variability in the training
set favors model performance for a more representative subset. Nevertheless,
this greater variability in the data did not favor languages not seen during
training. We also observed that the models seem more robust in dealing with
gender imbalance than age or accent. With these findings, we hope to help the
scientific community in the use of existing pre-trained models, as well as assist
in the pre-training of new models.
|
4 |
Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network : Bildklassificering för hjärntumör medhjälp av förtränat konvolutionell tneuralt nätverkOsman, Ahmad, Alsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells inthe brain. The brain is responsible for regulating the functions of all other organs,hence, any atypical growth of cells in the brain can have severe implications for itsfunctions. The number of global mortality in 2020 led by cancerous brains was estimatedat 251,329. However, early detection of brain cancer is critical for prompttreatment and improving patient’s quality of life as well as survival rates. Manualmedical image classification in diagnosing diseases has been shown to be extremelytime-consuming and labor-intensive. Convolutional Neural Networks (CNNs) hasproven to be a leading algorithm in image classification outperforming humans. Thispaper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7,and ResNet-50 in terms of performance and accuracy using transferlearning. In addition, the authors discussed in this paper the economic impact ofCNN, as an AI approach, on the healthcare sector. The models’ performance isdemonstrated using functions for loss and accuracy rates as well as using the confusionmatrix. The conducted experiment resulted in VGG-19 achieving best performancewith 97% accuracy, while EffecientNetB7 achieved worst performance with93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormalaceller i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ,därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dessfunktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandlingoch för att förbättra patienternas livskvalitet och överlevnadssannolikhet.Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sigvara extremt tidskrävande och arbetskrävande. Convolutional Neural Network(CNN) är en ledande algoritm för bildklassificering som har överträffat människor.Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet,EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterarförfattarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellensprestanda demonstrerades med hjälp av funktioner om förlust och noggrannhetsvärden samt med hjälp av en Confusion matris. Resultatet av det utfördaexperimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet,medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
|
5 |
Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network / Bildklassificering för hjärntumör med hjälp av förtränat konvolutionellt neuralt nätverkAlsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells in the brain. The brain is responsible for regulating the functions of all other organs, hence, any atypical growth of cells in the brain can have severe implications for its functions. The number of global mortality in 2020 led by cancerous brains was estimated at 251,329. However, early detection of brain cancer is critical for prompt treatment and improving patient’s quality of life as well as survival rates. Manual medical image classification in diagnosing diseases has been shown to be extremely time-consuming and labor-intensive. Convolutional Neural Networks (CNNs) has proven to be a leading algorithm in image classification outperforming humans. This paper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7, and ResNet-50 in terms of performance and accuracy using transfer learning. In addition, the authors discussed in this paper the economic impact of CNN, as an AI approach, on the healthcare sector. The models’ performance is demonstrated using functions for loss and accuracy rates as well as using the confusion matrix. The conducted experiment resulted in VGG-19 achieving best performance with 97% accuracy, while EffecientNetB7 achieved worst performance with 93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormala celler i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ, därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dess funktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till 251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandling och för att förbättra patienternas livskvalitet och överlevnadssannolikhet. Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sig vara extremt tidskrävande och arbetskrävande. Convolutional Neural Network (CNN) är en ledande algoritm för bildklassificering som har överträffat människor. Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet, EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterar författarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellens prestanda demonstrerades med hjälp av funktioner om förlust och noggrannhets värden samt med hjälp av en Confusion matris. Resultatet av det utförda experimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet, medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
|
6 |
Vitiligo image classification using pre-trained Convolutional Neural Network Architectures, and its economic impact on health care / Vitiligo bildklassificering med hjälp av förtränade konvolutionella neurala nätverksarkitekturer och dess ekonomiska inverkan på sjukvårdenBashar, Nour, Alsaid Suliman, MRami January 2022 (has links)
Vitiligo is a skin disease where the pigment cells that produce melanin die or stop functioning, which causes white patches to appear on the body. Although vitiligo is not considered a serious disease, there is a risk that something is wrong with a person's immune system. In recent years, the use of medical image processing techniques has grown, and research continues to develop new techniques for analysing and processing medical images. In many medical image classification tasks, deep convolutional neural network technology has proven its effectiveness, which means that it may also perform well in vitiligo classification. Our study uses four deep convolutional neural networks in order to classify images of vitiligo and normal skin. The architectures selected are VGG-19, ResNeXt101, InceptionResNetV2 and Inception V3. ROC and AUC metrics are used to assess each model's performance. In addition, the authors investigate the economic benefits that this technology may provide to the healthcare system and patients. To train and evaluate the CNN models, the authors used a dataset that contains 1341 images in total. Because the dataset is limited, 5-fold cross validation is also employed to improve the model's prediction. The results demonstrate that InceptionV3 achieves the best performance in the classification of vitiligo, with an AUC value of 0.9111, and InceptionResNetV2 has the lowest AUC value of 0.8560. / Vitiligo är en hudsjukdom där pigmentcellerna som producerar melanin dör eller slutar fungera, vilket får vita fläckar att dyka upp på kroppen. Även om Vitiligo inte betraktas som en allvarlig sjukdom, det finns fortfarande risk att något är fel på en persons immun. Under de senaste åren har användningen av medicinska bildbehandlingstekniker vuxit och forskning fortsätter att utveckla nya tekniker för att analysera och bearbeta medicinska bilder. I många medicinska bildklassificeringsuppgifter har djupa konvolutionella neurala nätverk bevisat sin effektivitet, vilket innebär att den också kan fungera bra i Vitiligo klassificering. Vår studie använder fyra djupa konvolutionella neurala nätverk för att klassificera bilder av vitiligo och normal hud. De valda arkitekturerna är VGG-19, RESNEXT101, InceptionResNetV2 och Inception V3. ROC- och AUC mätvärden används för att bedöma varje modells prestanda. Dessutom undersöker författarna de ekonomiska fördelarna som denna teknik kan ge till sjukvårdssystemet och patienterna. För att träna och utvärdera CNN modellerna använder vi ett dataset som innehåller totalt 1341 bilder. Eftersom datasetet är begränsat används också 5-faldigt korsvalidering för att förbättra modellens förutsägelse. Resultaten visar att InceptionV3 uppnår bästa prestanda i klassificeringen av Vitiligo, med ett AUC -värde på 0,9111, och InceptionResNetV2 har det lägsta AUC -värdet på 0,8560.
|
Page generated in 0.0703 seconds