• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 57
  • 57
  • 51
  • 38
  • 19
  • 16
  • 15
  • 12
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efeito de inibidor da acetilcolinesterase no metabolismo da proteína precursora do amiloide em plaquetas / Effect of Acetylcholinesterase inhibitors on amyloid precursor protein metabolism in platelets

Sarno, Tamires Alves 15 September 2016 (has links)
A doença de Alzheimer (DA) é uma doença neurodegenerativa e a principal causa de demência em idosos. Os mecanismos fisiopatológicos mais envolvidos na DA são: o acúmulo do peptídeo beta amiloide (A?) em agregados extracelulares, e a formação dos emaranhados neurofibrilares (ENF). A Proteína Precursora do Amiloide (APP) é clivada pelas secretases alfa (ADAM10), beta (BACE1) e y (Presenilina 1 [PSEN1]). As plaquetas contêm 95% da APP circulante e possuem toda a maquinaria necessária para estudar perifericamente a APP e suas secretases. A pesquisa de biomarcadores na DA tem como objetivo identificar, em vida, os indicadores do processo patogênico em fluídos corporais e/ou por métodos de imagem cerebral. O objetivo do presente estudo foi investigar proteínas envolvidas no metabolismo da APP em plaquetas de pacientes com DA e o potencial de modificação destas vias pela ação do tratamento com cloridrato de donepezila. Para tanto foram analisadas amostras de 23 pacientes com DA leve ou moderada, avaliados antes e depois de 6 meses de tratamento e 38 indivíduos idosos cognitivamente saudáveis (controles). As variáveis de desfecho estudadas foram: (1) expressão protéica de ADAM10, BACE1 e PSEN1; (2) expressão protéica dos metabólitos secretados da APP de 110 e 130kDa, possibilitando o cálculo da razão de APP (rAPP); e (3) atividade enzimática das APP-secretases ADAM10 e BACE1. Foram utilizados os métodos de western blotting e o fluorimétrico. Encontramos, nos pacientes com DA pré-tratamento, uma diminuição da rAPP em relação aos controles; porém, não identificamos diferenças após seis meses de tratamento. Os níveis de ADAM10 mostraram-se menores em pacientes com DA na avaliação basal quando comparados aos controles, mas também sem modificação com o tratamento, o tratamento mostrou-se associado a uma redução da expressão de BACE1 em pacientes com DA, embora não tenhamos encontrado diferenças entre pacientes e controles na avaliação basal. A expressão de PSEN1 mostrou-se menor nos pacientes com DA pré-tratamento quando comparada aos controles, sem contudo haver alteração em resposta ao tratamento. Quanto à atividade enzimática de ADAM10 e BACE1, não observamos diferenças nos valores pré e pós-tratamento. Nossos achados reforçam a utilidade da utilização de plaquetas como matriz biológica para o estudo do metabolismo da APP em tecidos periféricos e para a investigação de efeitos modificadores da patogenia da DA a partir do tratamento com drogas antidemência / Alzheimer\'s disease (AD) is a neurodegenerative disease and the major cause of dementia in the elderly. The main mechanisms in AD are: extracellular aggregates of beta amyloid peptide (Abeta) and neurofibrillary tangles formation (NFT). Amyloid Precursor Protein (APP) is cleaved by the secretases alfa (ADAM10), beta (BACE1) and ? (Presenilin 1 [PSEN1]). Platelets containing 95% of the circulating APP and possess all the machinery necessary to study peripherically APP and its secretases. The search for biomarkers in AD aims to identify, in life, the pathogenic process indicators in body fluids and/or brain image methods. The aim of this study was to investigate proteins involved in APP metabolism in platelets of AD patients, and the potential modification of these pathways by treatment with Donepezil hydrochloride. Therefore, 23 patients with mild to moderate AD evaluated before and after 6 months treatment and 38 healthy elderly subjects (controls) were analyzed. Outcome variables were: (1) ADAM10, BACE1 and PSEN1 expression; (2) APP secreted metabolites expression (110 and 130kDa), allowing the APP ratio (rAPP) estimate; (3) APP-secretase ADAM10 and BACE1 enzymatic activity. Western blotting and fluorimetric methods were used. We found in AD patients pre-treatment, a decrease of rAPP compared to controls; however, we did not identify differences of this parameter after six months of treatment. The ADAM10 levels were lower in AD patients at baseline when compared to controls, however no differences were observed after treatment. Treatment was associated with a reduction of BACE1 expression in AD patients, although we have not found differences between patients and controls at baseline. PSEN1 expression was lower in pre-treatment AD patients compared to controls. No differences were observed after treatment. Concerning to BACE1 and ADAM10 enzymatic activity, we did not observe differences in pre and post-treatment. Our findings strengthen the use of platelets as a biological matrix for the APP metabolism as well as the modifying effects on AD pathogenicity of antidementia drugs
32

Efeito de inibidor da acetilcolinesterase no metabolismo da proteína precursora do amiloide em plaquetas / Effect of Acetylcholinesterase inhibitors on amyloid precursor protein metabolism in platelets

Tamires Alves Sarno 15 September 2016 (has links)
A doença de Alzheimer (DA) é uma doença neurodegenerativa e a principal causa de demência em idosos. Os mecanismos fisiopatológicos mais envolvidos na DA são: o acúmulo do peptídeo beta amiloide (A?) em agregados extracelulares, e a formação dos emaranhados neurofibrilares (ENF). A Proteína Precursora do Amiloide (APP) é clivada pelas secretases alfa (ADAM10), beta (BACE1) e y (Presenilina 1 [PSEN1]). As plaquetas contêm 95% da APP circulante e possuem toda a maquinaria necessária para estudar perifericamente a APP e suas secretases. A pesquisa de biomarcadores na DA tem como objetivo identificar, em vida, os indicadores do processo patogênico em fluídos corporais e/ou por métodos de imagem cerebral. O objetivo do presente estudo foi investigar proteínas envolvidas no metabolismo da APP em plaquetas de pacientes com DA e o potencial de modificação destas vias pela ação do tratamento com cloridrato de donepezila. Para tanto foram analisadas amostras de 23 pacientes com DA leve ou moderada, avaliados antes e depois de 6 meses de tratamento e 38 indivíduos idosos cognitivamente saudáveis (controles). As variáveis de desfecho estudadas foram: (1) expressão protéica de ADAM10, BACE1 e PSEN1; (2) expressão protéica dos metabólitos secretados da APP de 110 e 130kDa, possibilitando o cálculo da razão de APP (rAPP); e (3) atividade enzimática das APP-secretases ADAM10 e BACE1. Foram utilizados os métodos de western blotting e o fluorimétrico. Encontramos, nos pacientes com DA pré-tratamento, uma diminuição da rAPP em relação aos controles; porém, não identificamos diferenças após seis meses de tratamento. Os níveis de ADAM10 mostraram-se menores em pacientes com DA na avaliação basal quando comparados aos controles, mas também sem modificação com o tratamento, o tratamento mostrou-se associado a uma redução da expressão de BACE1 em pacientes com DA, embora não tenhamos encontrado diferenças entre pacientes e controles na avaliação basal. A expressão de PSEN1 mostrou-se menor nos pacientes com DA pré-tratamento quando comparada aos controles, sem contudo haver alteração em resposta ao tratamento. Quanto à atividade enzimática de ADAM10 e BACE1, não observamos diferenças nos valores pré e pós-tratamento. Nossos achados reforçam a utilidade da utilização de plaquetas como matriz biológica para o estudo do metabolismo da APP em tecidos periféricos e para a investigação de efeitos modificadores da patogenia da DA a partir do tratamento com drogas antidemência / Alzheimer\'s disease (AD) is a neurodegenerative disease and the major cause of dementia in the elderly. The main mechanisms in AD are: extracellular aggregates of beta amyloid peptide (Abeta) and neurofibrillary tangles formation (NFT). Amyloid Precursor Protein (APP) is cleaved by the secretases alfa (ADAM10), beta (BACE1) and ? (Presenilin 1 [PSEN1]). Platelets containing 95% of the circulating APP and possess all the machinery necessary to study peripherically APP and its secretases. The search for biomarkers in AD aims to identify, in life, the pathogenic process indicators in body fluids and/or brain image methods. The aim of this study was to investigate proteins involved in APP metabolism in platelets of AD patients, and the potential modification of these pathways by treatment with Donepezil hydrochloride. Therefore, 23 patients with mild to moderate AD evaluated before and after 6 months treatment and 38 healthy elderly subjects (controls) were analyzed. Outcome variables were: (1) ADAM10, BACE1 and PSEN1 expression; (2) APP secreted metabolites expression (110 and 130kDa), allowing the APP ratio (rAPP) estimate; (3) APP-secretase ADAM10 and BACE1 enzymatic activity. Western blotting and fluorimetric methods were used. We found in AD patients pre-treatment, a decrease of rAPP compared to controls; however, we did not identify differences of this parameter after six months of treatment. The ADAM10 levels were lower in AD patients at baseline when compared to controls, however no differences were observed after treatment. Treatment was associated with a reduction of BACE1 expression in AD patients, although we have not found differences between patients and controls at baseline. PSEN1 expression was lower in pre-treatment AD patients compared to controls. No differences were observed after treatment. Concerning to BACE1 and ADAM10 enzymatic activity, we did not observe differences in pre and post-treatment. Our findings strengthen the use of platelets as a biological matrix for the APP metabolism as well as the modifying effects on AD pathogenicity of antidementia drugs
33

Pathogenic Mechanisms of the Arctic Alzheimer Mutation

Sahlin, Charlotte January 2007 (has links)
<p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by neurofibrillay tangles and deposition of amyloid-β (Aβ) peptides. Several mutations in the gene for amyloid precursor protein (APP) cause familial AD and affect APP processing leading to increased levels of Aβ42. However, the Arctic Alzheimer mutation (APP E693G) reduces Aβ levels. Instead, the increased tendency of Arctic Aβ peptides to form Aβ protofibrils is thought to contribute to the pathogenesis. </p><p>In this thesis, the pathogenic mechanisms of the Arctic mutation were further investigated, specifically addressing if and how the mutation affects APP processing. Evidence of a shift towards β-secretase cleavage of Arctic APP was demonstrated. Arctic APP did not appear to be an inferior substrate for α-secretase, but the availability of Arctic APP for α-secretase cleavage was reduced, with diminished levels of cell surface APP in Arctic cells. Interestingly, administration of the fatty acid docosahexaenoic acid (DHA) stimulated α-secretase cleavage and partly reversed the effects of the Arctic mutation on APP processing.</p><p>In contrast to previous findings, the Arctic mutation generated enhanced total Aβ levels suggesting increased Aβ production. Importantly, this thesis illustrates and explains why measures of both Arctic and wild type Aβ levels are highly dependent upon the Aβ assay used, with enzyme-linked immunosorbent assay (ELISA) and Western blot generating different results. It was shown that these differences were due to inefficient detection of Aβ oligomers by ELISA leading to an underestimation of total Aβ levels. </p><p>In conclusion, the Arctic APP mutation leads to AD by multiple mechanisms. It facilitates protofibril formation, but it also alters trafficking and processing of APP which leads to increased steady state levels of total Aβ, in particular at intracellular locations. Importantly, these studies highlight mechanisms, other than enhanced production of Aβ peptide monomers, which could be implicated in sporadic AD.</p>
34

Pathogenic Mechanisms of the Arctic Alzheimer Mutation

Sahlin, Charlotte January 2007 (has links)
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by neurofibrillay tangles and deposition of amyloid-β (Aβ) peptides. Several mutations in the gene for amyloid precursor protein (APP) cause familial AD and affect APP processing leading to increased levels of Aβ42. However, the Arctic Alzheimer mutation (APP E693G) reduces Aβ levels. Instead, the increased tendency of Arctic Aβ peptides to form Aβ protofibrils is thought to contribute to the pathogenesis. In this thesis, the pathogenic mechanisms of the Arctic mutation were further investigated, specifically addressing if and how the mutation affects APP processing. Evidence of a shift towards β-secretase cleavage of Arctic APP was demonstrated. Arctic APP did not appear to be an inferior substrate for α-secretase, but the availability of Arctic APP for α-secretase cleavage was reduced, with diminished levels of cell surface APP in Arctic cells. Interestingly, administration of the fatty acid docosahexaenoic acid (DHA) stimulated α-secretase cleavage and partly reversed the effects of the Arctic mutation on APP processing. In contrast to previous findings, the Arctic mutation generated enhanced total Aβ levels suggesting increased Aβ production. Importantly, this thesis illustrates and explains why measures of both Arctic and wild type Aβ levels are highly dependent upon the Aβ assay used, with enzyme-linked immunosorbent assay (ELISA) and Western blot generating different results. It was shown that these differences were due to inefficient detection of Aβ oligomers by ELISA leading to an underestimation of total Aβ levels. In conclusion, the Arctic APP mutation leads to AD by multiple mechanisms. It facilitates protofibril formation, but it also alters trafficking and processing of APP which leads to increased steady state levels of total Aβ, in particular at intracellular locations. Importantly, these studies highlight mechanisms, other than enhanced production of Aβ peptide monomers, which could be implicated in sporadic AD.
35

Die Trisomie 16 der Maus als Modell zur Untersuchung von Dosiseffekten des Amyloidvorläuferproteins an Feten und intrazerebroventrikulären Transplantaten

Stahl, Tobias 28 November 2004 (has links) (PDF)
Zusammenfassung: Patienten mit Down Syndrom (DS, Trisomie 21) entwickeln im vierten Lebensjahrzehnt eine Neuropathologie, wie sie beim Morbus Alzheimer (AD) beobachtet wird. Im Gehirn dieser Patienten kommt es zur Ausbildung von senilen Plaques, neurofibrillären Veränderungen und zu einer Schädigung des cholinergen Systems. Als erstes Zeichen der beginnenden Veränderungen wird die erhöhte Konzentration und Akkumulation von sogenannten beta-A4-Peptiden gewertet. Diese Peptide, die auch den Hauptbestandteil der senilen Plaques darstellen, entstehen durch die Prozessierung eines größeren Proteins des Amyloidvorläuferproteins (amyloid precursor protein, APP). Beim Menschen wurde das APP-Gen auf einem distalen Segment des langen Arms des Chromosoms 21 lokalisiert. Das Homolog dieses evolutionär stark konservierten, syntenen Segmentes liegt bei der Maus auf dem Chromosom 16. Natürlich in wilden Mäusepopulationen auftretende Robertsonsche Translokationen ermöglichen es, Mäuse mit Trisomie 16 zu züchten. Mit Hilfe der Maus-Trisomie 16 sollte ein Modell etabliert werden, mit dem es unter in vivo Bedingungen möglich ist, die Auswirkungen der erhöhten APP-Gendosis auf die Ausbildung der bei DS und AD beobachteten neurodegenerativen Veränderungen zu untersuchen. Da trisomische Feten am Ende der Trächtigkeit absterben, wurden aus dem basalen Vorderhirn trisomischer und diploider Feten Transplantate gewonnen und in den Lateralventrikel adulter euploider Mäuse implantiert. Die Entwicklung der Transplantate wurde nach 1, 3, 6, 9 und 12 Monaten immunhistochemisch charakterisiert. Ein Antikörper gegen das Thymozytenantigen (Thy)-1.2 wurde, beruhend auf der unterschiedlichen Thy-1-Allel-Expression von Transplantat und Empfänger, zur Transplantatidentifikation genutzt. Mit Antikörpern gegen das neuronale Markerprotein PGP-9.5, gegen Cholinacetyltransferase, Parvalbumin und Glutamatdecarboxylase wurden Neuronen charakterisiert. Die immunologische Reaktion wurde mit Antikörpern gegen saures fibrilläres Gliaprotein, gegen das Makrophagenantigen F4/80, gegen CD3, gegen CD45/ B220 und mit Lycopersicon esculentum-Lektin untersucht. Für den APP- bzw. beta-A4-Peptidnachweis wurden ein Antikörper gegen den C-Terminus des APP und der Antikörper 4G8 eingesetzt. Zusätzlich wurde mit Hilfe von molekularbiologischen Techniken (Northern-Blot, Polymerase-Kettenreaktion) die APP-Expression in Trisomie 16-Feten untersucht. Mit immunhistochemischen und histochemischen Methoden wurde versucht, den Entwicklungstand des basalen Vorderhirns zum Zeitpunkt der Transplantatpräparation am Gestationstag 15 zu untersuchen. / Summary: Patients suffering from Down's syndrome (DS, trisomy 21) develop neuropathological abnormalities similar to Alzheimer's disease (AD) in the fourth decade of life. Amongst others, neuritic plaques, neurofibrillary abnormalities and alterations in cholinergic basal forebrain systems were observed. These sequentially occuring disturbancies are initiated by a rise in the concentration and accumulation of the beta-amyloid-peptides. The beta-amyloid-peptides are derived by proteolytic processing from a larger amyloid precursor protein (APP) and compose the majority of the material deposited in amyloid plaques. In humans, the APP gene maps to the distal segment of the long arm of chromosome 21, but in mice the homolog gene locus is on chromosome 16. The naturally occuring Robertsonian translocations in feral mice (Mus musculus sp.) allow to breed trisomy 16 mice. The aim of this study was to establish an in vivo model to investigate the consequences of increased APP gene dosage on the generation of neuropathological abnormalities typical for DS and AD using trisomy 16 mice. Since trisomy 16 mice die at the end of prenatal development, basal forebrain tissue of diploid and trisomic fetuses was prepared and transplanted into lateral ventricles of adult euploid mice. Grafts were identified immunocytochemically using an antibody against thymocyte antigen-1.2, selectively labeling graftet tissue. Antibodies against the neuronal markerprotein PGP-9.5, choline acetyltransferase, parvalbumin and glutamate decarboxylase were used to characterize grafted neurons over a period of twelve months after implantation. The immunological tissue response in the brains of acceptor mice was monitored using antibodies against glial fibrillary acidic protein (GFAP), the macrophage antigen F4/80, CD3,CD45/B220 and using the Lycopersicon esculentum lectin. To detect APP and beta-amyloid-peptides,antibodies against a C-terminal APP fragment and the antibody 4G8 were used. Additionally, the APP mRNA expression in trisomy 16 mice was followed employing Northern-blot analysis and RT-PCR. The developmental state of basal forebrain tissue to be transplanted was characterized at the time of transplantation (gestation day 15) by means of histochemistry and immunohistochemistry.
36

Hyposialylation regulates [alpha]4[beta]1 integrin binding to VCAM-1

Woodard-Grice, Alencia V. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed on June 29, 2009). Includes bibliographical references.
37

Molecular genetics of early-onset Alzheimer's disease and frontotemporal lobar degeneration

Krüger, J. (Johanna) 19 October 2010 (has links)
Abstract Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are the two most common neurodegenerative diseases leading to early onset dementia (&lt; 65 years). Mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes cause a proportion of familial early-onset AD (eoAD), while the microtubule-associated protein tau (MAPT) and progranulin (PGRN) mutations have been identified in FTLD patients. Only a few PSEN1 and APP mutations have previously been found in Finnish AD patients, and one MAPT mutation in a FTLD family, while the role of PGRN in Finnish FTLD patients is unknown. Increasing evidence suggests that mitochondrial dysfunction and oxidative stress also play an important role in neurodegenerative diseases. The aim here was to investigate the genetics of eoAD and FTLD in the population of the province of Northern Ostrobothnia, Finland. Sequencing analysis of the APP, PSEN1 and PSEN2 genes was performed to determine whether mutations in these genes could be detected. The MAPT and PGRN genes were analysed in the FTLD patients by sequencing and MAPT haplotypes were determined. The contributions of mtDNA and its maintenance enzymes to eoAD and FTLD were studied by comparing the frequencies of mtDNA haplogroups and their clusters between the patient groups and controls and by screening for the five common POLG1 mutations (T251I, A467T, P587L, W748S, Y955C), two common mtDNA mutations (m.3243A>G, m.8344A>G) and mutations in the PEO1 and ANT1 genes. This is the first report of a significant association between the mtDNA haplogroup cluster IWX and FTLD. The H2 MAPT haplotype was also associated with FTLD in our cohort. No significant differences in the frequencies of the mtDNA haplogroups were observed between the eoAD patients and controls, nor were there any pathogenic mutations detected in the genes analysed. The findings suggest that possession of the mtDNA haplogroup cluster IWX and the H2 MAPT haplotype may be possible risk factors for FTLD in our cohort. The absence of any pathogenic mutations in the MAPT, PGRN, APP or PSEN genes in our series, together with the previous reports of only a few mutations found in this region, supports a minor role for these genes in the aetiology of eoAD and FTLD in Northern Ostrobothnia and indicates that this population may have its own genetic features. There may be other, still unknown genetic factors to be discovered, that explain familial diseases in the region.
38

Cerebral Perfusion Pressure Directed Therapy Following Traumatic Brain Injury and Hypotension in Swine

Malhotra, Ajai K., Schweitzer, John B., Fox, Jerry L., Fabian, Timothy C., Proctor, Kenneth G. 01 September 2003 (has links)
There is a paucity of studies, clinical and experimental, attesting to the benefit of cerebral perfusion pressure (CPP) directed pressor therapy following traumatic brain injury (TBI). The current study evaluates this therapy in a swine model of TBI and hypotension. Forty-five anesthetized and ventilated swine received TBI followed by a 45% blood volume bleed. After 1 h, all animals were resuscitated with 0.9% sodium chloride equal to three times the shed blood volume. The experimental group (PHE) received phenylephrine to maintain CPP > 80 mm Hg; the control group (SAL) did not. Outcomes in the first phase (n = 33) of the study were as follows: cerebro-venous oxygen saturation (S cvO2), cerebro-vascular carbon dioxide reactivity (δScvO2), and brain structural damage (β-amyloid precursor protein [βAPP] immunoreactivity). In the second phase (n = 12) of the study, extravascular blood free water (EVBFW) was measured in the brain and lung. After resuscitation, intracranial and mean arterial pressures were >15 and >80 mm Hg, respectively, in both groups. CPP declined to 64 ± 5 mm Hg in the SAL group, despite fluid supplements. CPP was maintained at >80 mm Hg with pressors in the PHE group. PHE animals maintained better ScvO2 (p < 0.05 at 180, 210, 240, 270, and 300 min post-TBI). At baseline, 5% CO2 evoked a 16 ± 4% increase in ScvO2, indicating cerebral vasodilatation and luxury perfusion. By 240 min, this response was absent in SAL animals and preserved in PHE animals (p < 0.05). Brain EVBFW was higher in SAL animals; however, lung EVBFW was higher in PHE animals. There was no difference in βAPP immunoreactivity between the SAL and PHE groups (p > 0.05). In this swine model of TBI and hypotension, CPP directed pressor therapy improved brain oxygenation and maintained cerebro-vascular CO2 reactivity. Brain edema was lower, but lung edema was greater, suggesting a higher propensity for pulmonary complications.
39

Glicogênio sintase quinase3B e proteína precursora do amilóide em plaquetas de indivíduos com comprometimento cognitivo leve e doença de Alzheimer / Glycogen synthase kinase 3B and amyloid precursor protein in adults platelets with cognitive impairment and Alzheimers disease

Torres, Carolina Akkari 10 February 2010 (has links)
A doença de Alzheimer (DA) é uma doença neurodegenerativa caracterizada pelo declínio progressivo da memória e de outras funções cognitivas, acometendo, sobretudo, indivíduos idosos. A anormalidade do metabolismo da proteína precursora do amilóide (APP) e a hiperfosforilação da proteína TAU são processos celulares característicos desta doença. A enzima glicogênio sintase quinase 3B (GSK3B) é altamente expressa no sistema nervoso central e apresenta grande importância na regulação da plasticidade neuronal e também nos mecanismos de sobrevivência celular. Estudos têm associado a GSK3B aos mecanismos que levam à formação das placas senis e dos emaranhados neurofibrilares na DA. Diante da dificuldade para se estabelecer com precisão o diagnóstico clínico da DA, sobretudo nas fases iniciais da doença, a identificação de biomarcadores se torna particularmente importante, principalmente em tecidos periféricos. Este trabalho avaliou, por meio de dois preparos distintos, dois possíveis candidatos a marcadores bioquímicos para a DA. Em plaquetas de pacientes com DA, comprometimento cognitivo leve (CCL) e idosos saudáveis, determinamos: (1) a razão de APP (APPr), que consiste na proporção entre fragmentos de 130kDa e 110kDa da APP; e (2) a expressão das formas fosforilada (fosfo-GSK3B) e total (total-GSK3B) da enzima GSK3B, possibilitando o cálculo da razão de GSK3B (fosfo-GSK3B/total-GSK3B). Ambas as razões foram avaliadas por Western Blot utilizando anticorpos específicos. Não observamos diferença estatisticamente significante nos valores de APPr entre os três grupos estudados (p=0,847). Para o cálculo da razão de GSK3B, foram necessárias adaptações do protocolo de preparo e análise de plaquetas, prevenindo a ativação plaquetária durante o procedimento, bem como a degradação do substrato pela ação de proteases e fosfatases presentes nesta matriz biológica; deste modo foram encontradas diferenças estatisticamente significantes entre os grupos nas médias de GSK3B total e da razão de GSK3B (p=0,05 e p=0,06 respectivamente). Não foi encontrada correlação entre a razão de APP e a razão de GSK3B. Contudo, a razão de GSK3B mostrou correlação com o desempenho em testes de memória, segundo o escore na bateria cognitiva CAMCOG. Estes resultados sugerem que a razão de GSK3B em plaquetas sinaliza algumas alterações biológicas que ocorrem na progressão do CCL para a demência na DA / Alzheimer\'s disease (AD) is a neurodegenerative disease characterized by progressive decline of memory and other cognitive functions, affecting mainly elderly. The abnormal metabolism of amyloid precursor protein (APP) and protein TAU hyperphosphorylation are cellular hallmarks of this disease. Glycogen synthase kinase 3B (GSK3B) is an enzyme highly expressed in the central nervous system and of great importance in the regulation of neuronal plasticity and also the mechanisms of cell survival. Studies have associated GSK3B with the mechanisms that lead to the formation of senile plaques and neurofibrillary tangles in AD. Given the difficulty to establish the precise clinical diagnosis of AD, especially in the early stages of the disease, identification of biomarkers is particularly important, especially in peripheral tissues. This work evaluated two candidate biochemical markers for AD, using two different preparations. We investigated the ratio between 130kDa and 110kDa APP fragments (APPr) and between phosphorylated and total GSK3B (phospho-GSK3B / total-GSK3B) in platelets of patients with AD and mild cognitive impairment (MCI), comparing their results with those from healthy older adults (controls). The expression of APP fragments and GSK3B was assessed by Western blot using specific antibodies. No statistically significant differences in APPr were found between the study groups (p=0.847). We found statistically significant differences in mean total GSK3B and GSK3B ratio across disgnostic groups (p=0.05 and p=0.06, respectively). APPr and GSK3B ratio were not correlated, but the latter parameter did correlate with the performance on memory tests, as shown by the CAMCOG sub-score. The present data indicate that platelet GSK3B ratio may indicate biological changes that occur in the MCI-AD continuum
40

Rab Proteins and Alzheimer's: A Current Review of Their Involvement in Amyloid Beta Generation with Focus on Rab10 Expression in N2A-695 Cells

Arano Rodriguez, Ivan 01 March 2015 (has links)
This thesis work describes the role of Rab proteins in amyloid processing and clearance in different cell pathways. It also describes an experimental approach used to analyze the expression effects of Rab10 in amyloid beta production. Since the main theory behind neurodegeneration in Alzheimer's disease claims that high levels of amyloid beta 42 (Aβ42) molecules trigger widespread neuronal death, control of Aβ42 has been a main target in Alzheimer's disease research. In addition, several studies show increased levels of particular Rab proteins in Alzheimer's pathogenesis. However, no review consolidates current findings in neurodegeneration of Alzheimer's with Rab protein dysfunction. The first chapter of this thesis aims to address this need by providing a current review of Rab proteins associated with APP and neurodegeneration. The second chapter constitutes an experimental approach used to characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. We found that Rab10 expression does not affect APP production but significantly changes Aβ generation, particularly the toxic Aβ42 and Aβ42:40 ratio. On the other hand, we found no significant effect of Sar1A expression on either APP or amyloid beta generation. These findings partially confirm the work done by Kauwe et al (2015) and provide preliminary evidence for two potential targets for protective effects in neurodegeneration.

Page generated in 0.3747 seconds