• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of sec24 in protein export from the plant endoplasmic reticulum

Renna, Luciana 19 March 2008
Plant cells contain multiple mobile Golgi bodies. Golgi bodies receive cargo from specialized subdomains of the endoplasmic reticulum (ER), so-called ER export sites (ERES). How ERES operate in plant cells is largely uncharacterized. <p>In mammals and yeast, the commonly recognized ER-to-Golgi transport model asserts that protein transport between these two organelles is mediated by vesicles. Formation of these vesicles is interceded by COPII and COPI coat complexes. COPII coat proteins assemble at ERES. The minimal components of the COPII coat comprise the following proteins: the GTPase Sar1, and two large heterodimeric complexes, Sec23/24 and Sec13/31. COPII vesicles are responsible for forward (anterograde) protein traffic from the ER to the Golgi apparatus. Proteins are constantly recycled from the Golgi back to the ER through a conserved backward (retrograde) pathway mediated by COPI coat proteins. Fusion of the anterograde and retrograde carriers with target membranes is mediated by a subset of specialized proteins called soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Studies conducted in mammalian and yeast systems also concluded that ER-to-Golgi SNARE proteins and membrane cargo proteins are concentrated into COPII vesicles through a direct interaction and binding with the pre-budding complex Sec23/24-Sar1. <p>The COPII component distribution and their biological function in plant cells are largely uncharacterized. Therefore, through the study of the COPII protein Sec24, this work aimed (i) to investigate where and how protein transport between ER and Golgi occurs in plant cells, and (ii) to establish the importance of the anterograde and retrograde transport equilibrium in regulating the ER protein export. To do so, live cell imaging of a fluorescent protein fusion of Sec24 was used and the dynamics of this protein chimaera were followed in tobacco leaf epidermal cells. The imaging investigations were complemented by mutagenesis studies and biochemical analyses. <p>The obtained results indicate that in plant cells Sec24 is localized at specific regions of the ER that represent mobile units continuously joined to the Golgi apparatus. From this study the importance of the balance between the anterograde and retrograde transport in protein ER export has also emerged. I have shown in fact, that blockage of the retrograde pathway using Arf1 mutants and COPI chemical inhibitor determines the collapse of the anterograde protein trafficking from the ER to the Golgi. Moreover, this study has shown that Sec24 is capable of an interaction with the SNAREs Sed5 and Sec22. This is a forward step in our understanding of the role of Sec24 in the mechanism of cargo selection and recruitment.
2

The role of sec24 in protein export from the plant endoplasmic reticulum

Renna, Luciana 19 March 2008 (has links)
Plant cells contain multiple mobile Golgi bodies. Golgi bodies receive cargo from specialized subdomains of the endoplasmic reticulum (ER), so-called ER export sites (ERES). How ERES operate in plant cells is largely uncharacterized. <p>In mammals and yeast, the commonly recognized ER-to-Golgi transport model asserts that protein transport between these two organelles is mediated by vesicles. Formation of these vesicles is interceded by COPII and COPI coat complexes. COPII coat proteins assemble at ERES. The minimal components of the COPII coat comprise the following proteins: the GTPase Sar1, and two large heterodimeric complexes, Sec23/24 and Sec13/31. COPII vesicles are responsible for forward (anterograde) protein traffic from the ER to the Golgi apparatus. Proteins are constantly recycled from the Golgi back to the ER through a conserved backward (retrograde) pathway mediated by COPI coat proteins. Fusion of the anterograde and retrograde carriers with target membranes is mediated by a subset of specialized proteins called soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Studies conducted in mammalian and yeast systems also concluded that ER-to-Golgi SNARE proteins and membrane cargo proteins are concentrated into COPII vesicles through a direct interaction and binding with the pre-budding complex Sec23/24-Sar1. <p>The COPII component distribution and their biological function in plant cells are largely uncharacterized. Therefore, through the study of the COPII protein Sec24, this work aimed (i) to investigate where and how protein transport between ER and Golgi occurs in plant cells, and (ii) to establish the importance of the anterograde and retrograde transport equilibrium in regulating the ER protein export. To do so, live cell imaging of a fluorescent protein fusion of Sec24 was used and the dynamics of this protein chimaera were followed in tobacco leaf epidermal cells. The imaging investigations were complemented by mutagenesis studies and biochemical analyses. <p>The obtained results indicate that in plant cells Sec24 is localized at specific regions of the ER that represent mobile units continuously joined to the Golgi apparatus. From this study the importance of the balance between the anterograde and retrograde transport in protein ER export has also emerged. I have shown in fact, that blockage of the retrograde pathway using Arf1 mutants and COPI chemical inhibitor determines the collapse of the anterograde protein trafficking from the ER to the Golgi. Moreover, this study has shown that Sec24 is capable of an interaction with the SNAREs Sed5 and Sec22. This is a forward step in our understanding of the role of Sec24 in the mechanism of cargo selection and recruitment.
3

Organelle movement in melanophores: Effects of <em>Panax ginseng</em>, ginsenosides and quercetin

Eriksson, Therese January 2009 (has links)
<p><em>Panax ginseng</em> is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from <em>Xenopus laevis</em> to investigate the effects of <em>Panax ginseng</em> extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that <em>Panax ginseng</em> and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK.</p> / <p><em>Panax ginseng </em>är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av <em>Panax ginseng</em> på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att <em>Panax ginseng</em>, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.</p>
4

Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin

Eriksson, Therese January 2009 (has links)
Panax ginseng is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from Xenopus laevis to investigate the effects of Panax ginseng extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that Panax ginseng and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK. / Panax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
5

Rab Proteins and Alzheimer's: A Current Review of Their Involvement in Amyloid Beta Generation with Focus on Rab10 Expression in N2A-695 Cells

Arano Rodriguez, Ivan 01 March 2015 (has links)
This thesis work describes the role of Rab proteins in amyloid processing and clearance in different cell pathways. It also describes an experimental approach used to analyze the expression effects of Rab10 in amyloid beta production. Since the main theory behind neurodegeneration in Alzheimer's disease claims that high levels of amyloid beta 42 (Aβ42) molecules trigger widespread neuronal death, control of Aβ42 has been a main target in Alzheimer's disease research. In addition, several studies show increased levels of particular Rab proteins in Alzheimer's pathogenesis. However, no review consolidates current findings in neurodegeneration of Alzheimer's with Rab protein dysfunction. The first chapter of this thesis aims to address this need by providing a current review of Rab proteins associated with APP and neurodegeneration. The second chapter constitutes an experimental approach used to characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. We found that Rab10 expression does not affect APP production but significantly changes Aβ generation, particularly the toxic Aβ42 and Aβ42:40 ratio. On the other hand, we found no significant effect of Sar1A expression on either APP or amyloid beta generation. These findings partially confirm the work done by Kauwe et al (2015) and provide preliminary evidence for two potential targets for protective effects in neurodegeneration.
6

Role of EBAG9 in COPI-dependent glycoprotein maturation and secretion processes in tumor cells

Wolf, Jana 10 November 2010 (has links)
EBAG9 (estrogen receptor-binding fragment-associated gene 9) hat als unabhängiger prognostischer Marker viel Aufmerksamkeit erregt, da in einigen Tumoren hohe Expressionsraten und Tumorentwicklung korrelieren. In diesen Fällen ist eine hohe EBAG9 Expression häufig mit einer schlechten klinischen Prognose verbunden. EBAG9 ist ein ubiquitär exprimiertes Golgi Protein. Aktuelle Daten demonstrieren, dass es in sekretorischen Zellen an der regulierten Exozytose und an der zytotoxischen Funktion von Lymphozyten beteiligt ist. In epithelialen Zellen führt es zur Generierung von Tumor-assoziierten O-Glykanen, welche ein Erkennungsmerkmal vieler Krebsarten sind. In dieser Arbeit wurde der pathogenetische Zusammenhang zwischen EBAG9 Expression und der Veränderung des zellulären Glykoms untersucht. Um einen tieferen Einblick in die zelluläre Funktion von EBAG9 in epithelialen Zellen zu gewinnen, wurden Zellen mit tumorähnlicher EBAG9 Expression verwendet. Innerhalb dieser Arbeit wurde demonstriert, dass EBAG9 mit anterograden COPI Vesikeln assoziiert und zwischen dem ER-Golgi intermediären Kompartiment und cis-Golgi pendelt. EBAG9 verursacht eine Verzögerung des anterograden Transportes vom ER zum Golgi und verändert die Lokalisation von Komponenten der ER Qualitätskontrolle und des Glycosylierungsapparates. Auf der anderen Seite beschleunigt die verminderte Expression von EBAG9 den Proteintransport durch den Golgi und verstärkt die Aktivität von Mannosidase II. Mechanistisch betrachtet verhindert EBAG9 die Rekrutierung von ArfGAP1 an die Membran. Dies beeinträchtigt das Auflösen der COPI Vesikelhülle und somit die Fusion von Vesikeln am cis-Golgi. Damit agiert EBAG9 in epithelialen Zellen als negativer Regulator des COPI-abhängigen ERGolgi Transportes und stellt damit ein neues phatogenetisches Prinzip dar, bei dem die Beeinflussung des intrazellulären Transportes zu der Entstehung von Tumor-assoziierten Glykanen führt. / The estrogen receptor-binding fragment-associated gene 9 (EBAG9) has received increased attention as an independent prognostic marker for disease-specific survival since in some human tumor entities high expression levels correlate with tumor progression and poor clinical prognosis. Interestingly, EBAG9 was identified as an ubiquitously expressed Golgi protein. Recent data demonstrate an involvement in regulated exocytosis in secretory cells and the cytotoxic functions of lymphocytes. However, EBAG9 is expressed in essentially all mammalian tissues, and in epithelial cells it has been identified as a modulator of tumorassociated O-linked glycan expression, a hallmark of many carcinomas. This thesis addresses the pathogenetic link between EBAG9 expression and the alteration of the cellular glycome. To gain further insights into the cellular functions of EBAG9 in epithelial cells, tumor-associated EBAG9 overexpression was mimicked in living cells. It was demonstrated that EBAG9 associates with anterograde COPI-coated carriers and shuttles between the ER-Golgi intermediate compartment and cis-Golgi stacks. EBAG9 overexpression imposes a delay in anterograde ER-to-Golgi transport and mislocalizes components of the ER quality-control and glycosylation machinery. Conversely, EBAG9 downregulation accelerates glycoprotein transport through the Golgi and enhances mannosidase activity. Functionally, EBAG9 impairs ArfGAP1 recruitment to membranes and consequently, interferes with the disassembly of the coat lattice at the cis-Golgi prior to fusion. Thus, EBAG9 acts as a negative regulator of a COPI-dependent ER-to-Golgi transport pathway in epithelial cells and represents a novel pathogenetic principle in which interference with intracellular membrane trafficking results in the emergence of a tumor-associated glycome.
7

Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen

Negatsch, Alexandra 28 September 2015 (has links) (PDF)
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.
8

Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen

Negatsch, Alexandra 25 February 2014 (has links)
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.

Page generated in 0.1039 seconds