• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The prion-like properties of assembled human alpha-synuclein

Morgan, Sophie January 2018 (has links)
The pathological hallmark of many age-related neurodegenerative diseases is the presence of proteinaceous inclusions in nerve cells and glial cells. Alpha-synuclein is the main component of the inclusions of Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy, as well as of rarer diseases, collectively called synucleinopathies. For a long time, it was widely believed that neurodegenerative diseases were cell-autonomous; however, a more recent hypothesis has suggested that some misfolded proteins resemble prions. Thus, aggregated alpha-synuclein shares features of PrPSc, the scrapie form of the prion protein. The aim of this thesis was to further characterize the prion-like properties of aggregated alpha-synuclein by studying the pathways of seeded aggregation, and to identify the species of alpha-synuclein responsible. I present evidence, using a HEK 293T cell model, that filamentous protein was the most seed-potent form of alpha-synuclein. Recombinant aggregated protein, aggregated alpha-synuclein from mice transgenic for A53T alpha-synuclein, as well as alpha-synuclein aggregates from Parkinson’s disease and multiple system atrophy brains, seeded aggregation. The mechanisms of alpha-synuclein internalization and intracellular trafficking, and how these processes affect seeded aggregation, are not fully understood. I showed that internalization of alpha-synuclein aggregates occurs through clathrin- and dynamin-independent, Cdc42-, actin- and PI3K-dependent endocytosis. Alpha-synuclein aggregates are trafficked to the endolysosomal pathway; a small fraction of lysosomes ruptures, which induces aggregation of expressed cytoplasmic alpha-synuclein, and disruption of autophagy, which in turn enhances seeded aggregation. These findings expand knowledge of the prion-like properties of assembled alpha-synuclein and identify novel mechanisms with therapeutic potential.
2

Development of Inhibitors of Amyloid Fibril Propagation / Développement d'inhibiteurs de la propagation des fibres amyloïdes

Bendifallah, Maya 16 December 2019 (has links)
L'α-Synuclein (αSyn) fibrillaire, impliqué dans la maladie de Parkinson et d’autres synucleinopathies, peut se propager entre cellules de manière « prion-like » et cette propagation est liée à la progression de la maladie. Durant cette étude, nous nous sommes tournés vers les chaperons moléculaires impliqués dans l’agrégation de l’αSyn ou bien dans sa toxicité afin de trouver des candidats capables d’interférer avec la propagation. Nous avons ensuite testé l’effet des chaperons capables de se lier aux fibres d’αSyn sur l’internalisation des fibres d’αSyn par les cellules Neuro-2a. Nous démontrons que l’interaction avec l’αSyn agrégeant avec αB-crystallin (αBc) ou Carboxyl terminus of Hsc70-interacting protein (CHIP) a mené à la formation de fibres qui sont moins internalisées par les cellules. Enfin, en passant par une stratégie de pontage chimique optimisé couplé à la spectrométrie de masse, nous avons identifié les zones d’interaction entre l’αSyn fibrillaire et soit αBc, soit CHIP. Ces résidus issus des chaperons, se trouvant à proximité des fibres d’αSyn dans les complexes, pourraient être développés dans des mini-chaperons peptidiques, capables d’enrober la surface des fibres et ainsi de bloquer la liaison à la membrane et l’internalisation des fibres. De surcroît, des polypeptides issus des partenaires précédemment identifiés d’αSyn ont été testé pour leur liaison aux fibres et leur effet sur la propagation des fibres. / Fibrillar α-Synuclein (αSyn) is the molecular hallmark of Parkinson’s Disease and other synucleinopathies. Its prion-like propagation between cells is linked to disease progression. In this study, we looked to molecular chaperones previously implicated in αSyn fibrillation and/or toxicity to identify proteins capable of binding αSyn fibrillar aggregates in order to target their propagation. We further assessed the effect of the fibril-binding chaperones on internalization of αSyn fibrils by Neuro-2a cells. We demonstrate that the interaction of aggregating αSyn with αB-crystallin (αBc) or Carboxyl terminus of Hsc70-interacting protein (CHIP) led to the formation of fibrils that are less internalized by cells. Finally, using an optimized chemical cross-linking and mass spectrometry strategy, we identified the interaction areas between fibrillar αSyn and either αBc or CHIP. These chaperone residues, located proximally to αSyn fibrils, could be subsequently developed into peptidic mini chaperones, capable of coating the fibril surface and thereby blocking fibrillar cell binding and internalization. Furthermore, polypeptides derived from previously identified αSyn binding partners were tested for their binding to αSyn fibrils and subsequent effect on fibril propagation.
3

Single molecule fluorescence studies of prions and prion-like proteins

Sang, Chieh January 2019 (has links)
Prions are infectious agents that cause fatal neurodegenerative diseases in the brain. The wide-accepted protein-only hypothesis states that the misfolded form of prion protein (PrP) is the sole constituent of prions, and the self-propagating process of PrP is considered to play a central role in prion pathogenesis. Prions are believed to propagate when a PrP assembly enters a cell and replicates to produce two or more fibrils, leading to an exponential increase in PrP aggregate number with time. However, the molecular basis of this process has not yet been established in detail. This prion-like replication is also suggested to be the mechanism in the development of other notorious neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. In this thesis, I use single-aggregate imaging to study fibril fragmentation and elongation of individual murine PrP aggregates from seeded aggregation in vitro. From fluorescence imaging of individual PrP aggregates on the coverslip surface, elongation and fragmentation of the PrP assemblies have been directly observed. PrP elongation occurs via a structural conversion from a proteinase K (PK)-sensitive to PK-resistant conformer. Fibril fragmentation was found to be length-dependent and resulted in the formation of PK-sensitive fragments. To gain more insights into the mechanism of the spread of PrP, the quantified kinetic profiles allows the determination of the rate constants for these processes through the use of kinetic modelling. This enables the estimation of a simple framework for aggregate propagation through the brain, assuming that doubling of the aggregate number is rate-limiting. In contrast, the same method was applied to measurement for α-Synuclein (αS) aggregation, which has been suggested to be prion-like and is associated with Parkinson's disease. While αS aggregated by the same mechanism, it showed significantly slower elongation and fragmentation rate constants than PrP, leading to much slower replication rate. Furthermore, the measurements in αS aggregation has been extended to the cellular environment, I use super-resolution imaging to study the amplification of endogenous αS aggregation in cells and the transcellular spread of αS. Endogenous αS showed a clear amplification in number of aggregates with time after seed transduction, and the newly-formed αS aggregates are likely to spread through cell-to-cell transmission. The proteasome was demonstrated to possess a novel disaggregase function for αS fibrils and thus produce more seeds for further replication. It partially explains that αS aggregation in cells was found to replicate at a substantially faster rate than that in vitro. Determining the nature of the oligomers formed during aggregation has been experimentally difficult due to the lack of suitable methods capable of detecting and characterising the low level of oligomers. To address this problem, I have studied the early formation of PrP oligomers formed during aggregation in vitro using various single-molecule methods. The early aggregation of PrP is observed to form a thioflavin T (ThT)-inactive and two ThT-active species of oligomers, which differ in size and temporal evolution. The ThT-active oligomers undergo a structural conversion from a PK-sensitive to PK-resistant conformer, while a fraction of which grow into mature fibrils. These results also enable the establishment of a kinetic framework for elucidating temporal evolution of PrP aggregation and the relationship between oligomers and fibrils. Overall, my research identifies fibril elongation with fragmentation are the key molecular processes leading to PrP and αS aggregate replication, an important concept in prion biology, and provides a simple framework to estimate the rate of prion and prion-like spreading in animals. The results also show that a diverse range of oligomers is formed and co-exist during PrP aggregation which differ both in their structure and properties and provides mechanistic insights into a prion aggregation. The work provides a new quantitative approach to describe the prion-like property in neurodegenerative diseases from a kinetic perspective that can be verified in extending studies in other proteins or in cells.
4

Molecular and cellular mechanism of α-synuclein assemblies transfer between neuronal cells : role of Tunneling nanotubes / Mécanismes moléculaire et cellulaire du transfert des assemblages de la protéine α-synucléine entre cellules neuronales : rôle des Tunneling nanotubes

Abounit, Saïda 04 May 2015 (has links)
Les synucléionopathies représentent un groupe de maladies neuro-dégénératives incurables du système nerveux central. Elles regroupent entre autres la maladie de Parkinson, l’atrophie multi-systématisée et la maladie à corps de Lewy. Toutes ces maladies se caractérisent par un déclin progressif des fonctions motrices, cognitives, comportementales et autonomiques. La mal-conformation et l’agrégation de la protéine α-synuclein qui forme des inclusions intraneuronales sont des éléments communs à toutes les synucleinopathies. Ces inclusions portent le nom de corps de Lewy et se forment dans des neurones ou cellules gliales appartenant à des régions cérébrales spécifiques. Elles sont vraisemblablement à l’origine de la perte progressive de neurones dans certaines parties du cerveau. Dans le cas de la maladie de Parkinson et dans d’autres maladies neuro-dégénératives, il a été démontré que la pathologie se propage anatomiquement d’une manière spécifique et prévisible au niveau cérébrale. Ceci suggère donc que la progression de la maladie est étroitement liée au transfert des agrégats d’α-synucléine. Ce procédé est très similaire à celui impliqué dans la maladie du prion qui elle en revanche est infectieuse. Par ailleurs, des inclusions neuronales d’α-synucléine ont été identifiées dans des neurones dopaminergiques d’origine fœtaux qui avaient été transplanté dans des cerveaux de patients parkinsoniens. Cette étude a permis d’envisager pour la première fois la possibilité de la transmission d’inclusions d’α-synucléine entre les neurones. Bien que de nombreuses études aient démontré la propagation d’α-synucléine in vitro et in vivo, le mécanisme permettant ce transfert n’est pas clairement établi. Par conséquent, ma thèse s’attache à étudier le mécanisme de transfert d’assemblages d’α-synucléine (i.e., oligomères et fibrilles). Dans un premier temps, j’ai apporté la preuve que les assemblages d’α-synucléine transfèrent de manière efficace entre les cellules neuronales via les Tunneling nanotubes (TNT). Les TNT sont définis comme étant des ponts membranaires riches en F-actine et permettant de connecter physiquement le cytoplasme de cellules éloignées. Au niveau subcellulaire, j’ai démontré que les assemblages d’α-synucléine qui transfèrent se trouvent dans des lysosomes. En revanche, après le transfert, ces assemblages se retrouvent libres dans le cytoplasme. J’ai également mis en évidence qu’à la suite du transfert, permis par les TNT, les fibrilles d’α-synucléine sont capables de recruter et d’induire l’agrégation de l’α-synucléine soluble afin de perpétuer le processus d’agrégation à l’infinie. Ces résultats indiquent que les TNT peuvent représenter un moyen efficace permettant le transfert d’assemblages d’α-synucléine. Cette découverte offre de nouvelles opportunités pour le développement de nouveaux agents neuro-protectifs contre la propagation des synucléinopathies. / Synucleinopathies are a group of fatal neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, characterized by a chronic and progressive decline in motor, cognitive, behavioral, and autonomic functions. The hallmark of these diseases is the misfolding and aggregation of α-synuclein protein accumulating into intracellular inclusions Lewy bodies in neurons and glial cells which leads to the loss of neurons in specific brain regions. In the case of Parkinson’s disease and other neurodegenerative diseases, the pathology was shown to progress throughout the brain in a specific and predictable manner suggesting that the progression of the diseases is linked to the transfer of aggregated α-synuclein that is reminiscent of prion diseases that are infectious. Importantly, upon transplantation of fetal dopaminergic neurons in the brain of Parkinson’s patients, neuronal inclusions were found in the grafted neurons strongly suggesting that α-synuclein inclusions could transmit between neurons. While several studies showed α-synuclein propagation in vitro and in vivo the mechanism of intercellular transfer remains elusive. The aim of my thesis was to study the mechanism of transfer of α-synuclein assemblies (i.e., oligomers and fibrils) involved in Parkinson’s pathogenesis. I evidenced that α-synuclein assemblies transferred efficiently via tunneling nanotubes (TNT), F-actin based membranous bridges connecting the cytoplasm of remote cells. I demonstrated that, at the sub-cellular level, the transferred α-synuclein assemblies were specifically confined in lysosomes and that upon transfer a large amount of α-synuclein was found free in the cytosol of acceptor cells. Finally, I showed that after TNT-mediated transfer α-synuclein fibrils recruited and seeded the aggregation of the soluble α-synuclein protein in order to perpetuate aggregation. The identification of TNT as an efficient means of α-synuclein transfer opens new avenues to the development of novel therapies targeting the spreading into the brain of amyloidogenic proteins involved in neurodegenerative diseases.
5

Prion-like Properties in Vesicle Trafficking

McKeith Pearson II (11205306) 20 August 2023 (has links)
<p>Vesicle trafficking is an important process critical for secretory and endocytic purposes, but it is also crucial for cell homeostasis, <i>e.g.,</i> for maintenance of organelle identity and recycling of membrane components.</p><p>The endomembrane-located adaptor protein Epsin R (Epsin-Related protein) is believed to be important for recycling of SNARES like Vti1b from endosomes to the trans Golgi network (TGN), although its involvement in TGN to endosome transport has been also proposed. Further highlighting its impact in cellular and organismal physiology, certain <i>EPSIN R</i> SNPs have been linked to schizophrenia and Epsin R deficiencies correlate with other pathological conditions related to epidermis homeostasis such as psoriasis and eczema.</p><p>Epsin R belongs to the conserved Epsin family of adaptors and as such it presents a characteristic Epsin N-Terminal Homology (ENTH) domain and a largely unstructured C-terminus. The latter contains binding motifs for important elements of the vesicle trafficking machinery.</p><p>Here we identified a C-terminal region of Epsin R with prion-like characteristics (Prion Forming Region or PFR). We found that GFP-Epsin R is localized in intracellular punctate structures colocalizing with different intracellular markers; however, in contrast to other epsin family members, Epsin R displayed puncta of different size and with different protein content with a substantial contribution of large/bright particles. Importantly, the C-terminal Epsin R’s PFR was required for Epsin R localization and for the formation of large and bright puncta. Further, these structures displayed characteristics shared with other prion-like proteins. Our results therefore suggest that Epsin R possesses PFR-dependent prion properties that play an important role in this adaptor’s localization and function.</p><p>We propose a model in which prion-like proteins like Epsin R can rapidly and stably self-assemble at vesicle budding sites. These proteins would accelerate the formation of vesicle trafficking machinery and the recruitment of cargo. We also speculate that oligomerizing, self-templating reactions would occur under strict control of several cellular factors such as chaperones and post-translational modifications (<i>e.g.,</i> phosphorylation, ubiquitination, etc.) to assure quick and <i>reversible</i> association of prion-like proteins.</p>
6

Study of the mechanism of Tunneling nanotubes formation and their role in aggregate proteins transfer between cells / Etude du mécanisme de formation des Tunneling nanotubes et leur rôle dans le transfert de protéines agrégées entre les cellules

Zhu, Seng 29 September 2017 (has links)
Les Tunneling nanotubes (TNT) sont des protrusions cellulaires à base d'actine qui médient la communication cellulaire en transférant des cargos cellulaires. Les différents types de communication intercellulaires sont de plus en plus considérés comme des cibles potentielles pour le traitement de différentes maladies, telles que les maladies infectieuses liées aux virus et bactéries, les cancers ou les maladies neurodégénératives. Des études récentes ont mis en évidence un mécanisme de propagation d'agrégats protéiques ressemblant à la propagation du prion dans diverses maladies neurodégénératives non infectieuses telles que la maladie d'Alzheimer (AD), la démence frontotemporelle (FTD), la maladie de Parkinson (PD) et la maladie de Huntington. Ces maladies se caractérisent par l'accumulation de protéines mal repliées dans le cerveau des patients. Ainsi, on peut envisager de nouvelles stratégies thérapeutiques pour bloquer la propagation des protéines anormales dans tout le cerveau. Il a été démontré que les TNT pourraient jouer un rôle essentiel dans la propagation des agrégats de prions au sein du système nerveux central (SNC) et périphérique. Par conséquent, l'étude du mécanisme de la formation de TNT pourrait fournir de nouvelles idées sur le mécanisme de propagation de la maladie et de nouvelles cibles thérapeutiques. L'objectif de ma thèse était d'étudier le rôle du transfert des agrégats de protéines par les TNT entre les cellules et d'étudier le mécanisme de formation des TNT. Dans notre laboratoire, nous avons déjà montré que les TNT permettent le transfert de prions entre les cellules. Dans la première partie de mon doctorat, j'ai confirmé que les transferts d'agrégats de prions entre les cellules de CAD neuronales se faisaient par les TNT à l'intérieur de vésicules endocytiques (Zhu et al., 2015). De plus, en collaboration avec un collègue, nous avons fourni des preuves que les agrégats de prions pourraient être transférés entre des astrocytes primaires et des neurones et que ce transfert était médié par un contact cellulaire (Victoria et al., 2016). J'ai également collaboré à une autre étude où nous avons montré que les agrégats d'α-synucléine (caractéristiques de la maladie de Parkinson) peuvent être transférés entre les cellules à l'intérieur des lysosomes, et que ce transfert intercellulaire est médié par les TNT (Abounit et al., 2016). Dans mon deuxième projet, afin d'étudier le mécanisme de la formation de TNT, j'ai effectué un crible à haut débit pour les Rab GTPase. J'ai trouvé que Rab8 et Rab11 peuvent favoriser la formation des TNT, et que les cascades Rab8-VAMP3, Rab11-ERM et Rab8-Rab11 sont impliquées dans la formation des TNT. Mes données suggèrent que la polymérisation de l'actine et le trafic de membranes sont impliqués dans la formation des TNT. Ces résultats permettent d'éclairer le mécanisme de la formation des TNT et de fournir des preuves moléculaires que les Rab GTPases régulent ce processus. / Tunneling nanotubes are actin-based cell protrusions that mediate cell-to-cell communication by transferring cellular cargos. The different types of intercellular communication are increasing by being considered as potential targets for the treatment of various diseases, such as infectious diseases linked to viruses and bacteria, cancers or neurodegenerative diseases. Recent studies have highlighted a prion-like mechanism of propagation of protein misfolding in a variety of common, non-infectious, neurodegenerative diseases such as Alzheimer’s disease (AD), Frontotemporal dementia (FTD), Parkinson’s disease (PD), and Polyglutamine (PolyQ) diseases, which are characterized by the accumulation of misfolded proteins in the brain of patients. Thus, new therapeutic strategies to block propagation of protein misfolding throughout the brain can be envisaged. It has been shown that TNTs might play a critical role in spreading of prion aggregates within the CNS and from the periphery. Therefore, the study of mechanism of TNT formation could provide new insights on the mechanism of disease propagation and novel therapeutic targets. The aim of my thesis was to study the role of TNT-mediate protein aggregates transfer between cells and to investigate the mechanism of TNT formation. In our lab, we already reported TNT mediate prion transfer between cells. In the first part of my PhD, I further confirmed that prion aggregates transfer between neuronal CAD cells through TNT inside endocytic vesicles (Zhu et al., 2015). Furthermore in collaboration with a colleague, we provided evidences that prion aggregates could transfer between primary astrocytes and neurons and the transfer was mediated by cell-to-cell contact (Victoria et al., 2016). I also collaborated to another study where we showed that α-synuclein aggregates (Parkinson’s disease) can transfer between cells inside lysosomes, and the intercellular transfer is mediated by TNTs (Abounit et al., 2016).In my second project, in order to investigate the mechanism of TNT formation, I performed a High-content screening of Rab GTPase. I found that Rab8 and Rab11 can promote TNT formation, that Rab8-VAMP3, Rab11-ERM and Rab8-Rab11 cascades are involved in TNT formation. My data suggests that both actin polymerization and membrane trafficking are involved in TNT formation. These results help to shed light on the mechanism of TNT formation, and provide molecular evidences that Rab GTPases regulate this process.
7

The potential role of the multivalent ionic compound PolyP in the assembly of the liquid nature in the cell

Matta, Lara Michel 11 1900 (has links)
Les protéines de type prion, contenant des Séquences en acides aminés de Faible Complexité (SFC), ont tendance à s’agréger et à former des compartiments non-membranaires dans la cellule. Ces derniers ont des propriétés physiques communes à celles des liquides, telles que la capacité de mouiller les surfaces, de s’écouler et de fusionner avec d’autres corps liquides. Dans cette étude, nous avons démontré que la protéine Hrp1 forme, in vitro, des gouttes de différentes tailles via une transition de phase liquide à liquide, et ce, uniquement lorsqu’elle est exposée à un milieu chargé négativement. Exclusivement dans ce même milieu, nous avons aussi observé que le domaine SFC de Hrp1 s’assemble et forme une matière de type gel. Sur la base de ces observations, nous avons émis l’hypothèse que la tendance des systèmes moléculaires à former des compartiments liquides in vivo peut être influencée par la présence, dans le cytosol, de polyélectrolytes chargés négativement tels que l'ADN, l'ARN et les polyphosphates (PolyP). En utilisant la levure comme modèle cellulaire et des techniques de microscopie à fluorescence, nous nous sommes focalisés sur l’étude du rôle des PolyP dans l'assemblage des P-bodies. Les P-bodies ont été choisis comme système moléculaire de référence in vivo, étant des corps qui, après une transition de phase, se trouvent dans le cytosol sous forme de gouttes. Nous avons démontré que la déplétion du phosphate et la délétion du gène vtc4, responsable de la synthèse des PolyP dans la levure, n’ont pas d’influence dans la formation des P-bodies. Nous avons aussi remarqué que les PolyP et la protéine Edc3, une des composantes principales des P-bodies, ne sont pas co-localisés dans la cellule. Cette étude préliminaire nous suggère un manque de corrélation entre la formation des P-bodies et la présence de PolyP dans la cellule. Cependant, pour confirmer nos observations, des expériences complémentaires doivent être envisagées, en considérant d’autres composantes des P-bodies, tel que Lsm4, ou en analysant, in vivo, les effets des PolyP sur d’autres systèmes moléculaires de nature liquide. / Prion-like proteins containing Low Complexity Sequences (LCSs) have the propensity to aggregate and form membrane-less compartments in the cell. These proteins form droplets that have liquid features such as wetting, dripping and fusion. In this study, we demonstrated that the prion domain-containing protein Hrp1 forms droplets of different sizes in the presence of negatively charged polymers via liquid-liquid phase separation, whereas under the same conditions, the prion-like domain PolyQ/N of Hrp1 forms a gel-like material. Based on these findings, we hypothesize that droplets in vivo could be modulated by negatively charged polyelectrolytes found in the cell such as DNA, RNA and polyphosphate (PolyP). My goal was to examine the role of the polyanionic nature of PolyP on the assembly of P-bodies using Saccharomyces cerevisiae as a cellular model and fluorescence microscopy. We chose to study processing (P)- bodies, based on previous findings that these cellular subcompartments are formed by liquid-liquid phase separation of component proteins in the cytoplasm. We found that depleting phosphate from the media and deleting vtc4 gene, which is responsible for PolyP synthesis, did not have any effect on P-body formation. In addition, we demonstrated that PolyP and the protein Edc3, a core component of P-bodies, do not colocalize. Our data suggest that PolyP does not affect P-body formation. However, further and complementary studies have to be performed to confirm that PolyP have no effects on other membrane-less organelles.
8

La conséquence de l’expression de hnRNP A1B sur la réponse cellulaire au stress

Rolland, Sophie 08 1900 (has links)
No description available.
9

Les nanotubes comme nouvelle voie de transfert et de propagation de la protéine Tau pathologique / Nanotubes as a new pathway for the transfer and propagation of pathological Tau protein

Tardivel-Safi, Meryem 06 December 2017 (has links)
Récemment, le concept monofonctionnel de la protéine Tau en tant que protéine stabilisatrice des microtubules a été remis en cause. Ces nouvelles fonctions sont liées à de nouvelles localisations comme le noyau, la membrane, la synapse ou encore les vésicules. La localisation extracellulaire est particulièrement intéressante car elle pourrait intervenir dans la sécrétion de Tau et expliquer l’évolution hiérarchisée de certaines tauopathies sporadiques dont fait partie la maladie d’Alzheimer. La pathologie Tau peut être induite chez l’animal par injection intracrânienne d’espèces pathologiques et semble se transmettre d’un neurone à un autre et d’une région à une autre. Ce phénomène suit des voies neuroanatomiques et suggère une propagation active des assemblages toxiques des protéines Tau. Des études in vitro ont mis en évidence que les protéines Tau sont capables de se déplacer d’une cellule à une autre propageant ainsi la pathologie par un mécanisme de recrutement des espèces saines. L’existence d’une progression hiérarchisée de la pathologie Tau combinée à sa localisation extracellulaire permet de formuler une nouvelle hypothèse. La protéine Tau serait une protéine de type prion et se comporterait comme telle pour propager la pathologie.Cette caractéristique implique l’existence de mécanismes cellulaires de transports actifs pour transférer les protéines pathologiques. Plusieurs travaux ont montré que la protéine Tau est libérée dans le milieu extracellulaire ou enfermée dans des vésicules extracellulaires lors de son transport entre les cellules. Parallèlement aux mécanismes de sécrétion/capture, des ponts membranaires établissant un contact direct entre deux cellules pourraient être impliquer dans la propagation de Tau. Les TNTs constituent une piste sérieuse de part leur rôle déjà établi dans le transfert de pathogènes et de protéines mal repliées impliqués dans différentes maladies neurodégénératives. Notre objectif a donc été d’étudier l’implication de ces structures dans le transfert interneuronal des assemblages de protéines Tau.Dans ce travail de thèse, nous démontrons que les espèces pathologiques de Tau empruntent les TNTs pour leur transfert interneuronal. Nous apportons les preuves, par vidéo-microscopie, de l’existence d’un transfert de protéines Tau pathologiques d’un neurone primaire à un neurone secondaire et donc d’une implication potentielle des TNTs dans la propagation de la pathologie Tau et la transmission de la maladie. Fait remarquable, la présence des fibres Tau au niveau extracellulaire active la formation des TNTs et facilite leur transfert. Ce résultat place les TNTs au coeur du processus pathologique de la propagation et de son cycle infernal (transfert de Tau dans les cellules naïves par les TNTs – seeding - mort neuronal - libération de Tau dans le milieu extracellulaire - augmentation du nombre des TNTs…). Nous avons aussi apporté une caractérisation des TNTs dans les neurones primaires. Ce résultat est d’autant plus important qu’il est difficile d’identifier des TNTs dans les neurones et c’est dans ce contexte que nous avons réalisé une découverte étonnante, la protéine Tau endogène est présente de manière physiologique dans les TNTs de neurones primaires. Ces résultats révèlent, et pour la première fois, que la protéine Tau, comme l’actine, peut être considérée comme une composante constitutive des TNTs dans les neurones. Elle pourrait ainsi être utilisée comme un marqueur des TNTs. Ces résultats mettent également en lumière une nouvelle fonction de Tau appuyant une fois de plus le caractère multifonctionnel de cette protéine [...] / Over the past few years, the monofunctional concept of Tau protein as a microtubule-associated stabilizing protein has been challenged. These new functions are linked to new localizations: nucleus, membrane, synapse or vesicles. The extracellular localization is particularly interesting as it could play a role in the secretion of Tau and explain the hierarchical evolution of some sporadic tauopathies such as Alzheimer's disease. The Tau pathology can be induced in animals by intracranial injection of pathological species and seems to be transferred from one neuron to another and from one region to another. This phenomenon follows neuroanatomic pathways and suggests an active propagation of the toxic assemblies of Tau proteins. In vitro studies have shown that proteins are able to move from one cell to another and induce the same abnormal conformation of endogenous Tau proteins initiating a self-amplifying cascade. The existence of a hierarchical progression of the Tau pathology combined with its extracellular localization enables to express a new hypothesis. The Tau protein would be a prion-like protein and would behave like that to propagate the pathology.This characteristic implies the existence of cellular active transport mechanisms to transfer pathological proteins. Several studies have shown that the Tau protein, during transport between cells, is released in the extracellular medium or enclosed in extracellular vesicles. Simultaneously with secretion / capture mechanisms, membrane bridges, establishing direct contact between two cells, could be involved in Tau propagation. TNTs are a serious candidate with their already established role in the transfer of pathogens and misfolding proteins involved in various neurodegenerative diseases. Thus, our objective was to study the involvement of these structures in the interneuronal transfer of Tau protein assemblies.In this thesis, we demonstrate that Tau pathological species use TNTs for their interneuronal transfer. We bring evidences, by videomicroscopy, that pathological Tau proteins are transferred from a primary to a secondary neuron and that TNTs could be involved in the spreading of Tau pathology and the disease transmission. Furthermore, the presence of extracellular Tau fibers can activate the formation of TNTs and facilitate their transfer. This result places TNTs in a central place for propagation pathological process and its vicious cycle (transfer of Tau in naive cells by TNTs - seeding - neuronal death – release of Tau in the extracellular environment - increase in the number of TNTs…). We also made a characterization of the TNTs in primary neurons. This result is really important as it is really complex to identify TNTs in neurons. And in this context, we made a surprising discovery: the endogenous Tau protein is physiologically present in TNTs in primary neurons. These results reveal, for the first time, that the Tau protein, like actin, can be considered as a constitutive component of TNTs in neurons. Thus, it could be used as a marker for TNTs. All these results also highlight a new Tau function and reinforce the multifunctional characteristic of this protein.To confirm the importance of this new pathway in the pathological process, further studies should be considered by analyzing if the transfer of pathological Tau species induces a pathological phenotype in the recipient cell and by looking for the cellular mechanisms involved in the transfer of toxic Tau assemblies by TNTs. In vivo studies on integrated systems such as Caenorhabditis elegans would confirm the involvement of these dynamic structures in the pathological process and identify a new therapeutic target.
10

The regulation and induction of clathrin-mediated endocytosis through a protein aqueous-aqueous phase separation mechanism

Bergeron-Sandoval, Louis-Philippe 12 1900 (has links)
La morphologie des cellules et leurs interactions avec l’environnement découlent de divers procédés mécaniques qui contribuent à la richesse et à la diversité de la vie qui nous entoure. À titre d’exemple, les cellules mammifères se conforment à différentes géométries en fonction de l’architecture de leur cytosquelette tandis que les bactéries et les levures adoptent une forme circulaire par turgescence. Je présente, dans cette thèse, la découverte d’un mécanisme de morphogénèse supplémentaire, soit la déformation de surface cellulaire via l’assemblage de protéines par démixtion de phases aqueuses non miscibles et l’adhésion entre les matériaux biologiques. J’expose de façon spécifique comment ce mécanisme régule le recrutement et le mouvement dynamique des protéines qui induisent l’invagination de la membrane plasmique lors de l’endocytose clathrine-dépendante (CME). Le phénomène de démixtion des protéines dans le cytoplasme est analogue à la séparation de phase de l’huile en solution aqueuse. Il constitue un mécanisme cellulaire important et conservé, où les protéines s’agglomèrent grâce aux interactions intermoléculaires qui supplantent la tendance du système à former un mélange homogène. Plusieurs exemples de compartiments cellulaires dépourvus de membrane se forment par démixtion de phase, tels que le nucléole et les granules de traitement de l’ARN [1-6]. Ces organes ou compartiments dénommés NMO, du terme anglais « non-membranous organelles », occupent des fonctions de stockage, de traitement et de modification chimique des molécules dans la cellule. J’explore ici les questions suivantes : est-ce que les NMO occupent d’autres fonctions à caractère morphologique ? Quels signaux cellulaires régulent la démixtion de phase des protéines dans la formation des NMO ? Fondée sur la physique mécanique du contact entre les matériaux, j’émets l’hypothèse que des compartiments cellulaires nanoscopiques, formés par démixtion de phase, génèrent des forces mécaniques par adhésion interfaciale. Le travail mécanique ainsi obtenu déforme le milieu cellulaire et les surfaces membranaires adjacents au NMO nouvellement créé. Le but de mon doctorat est de comprendre comment les cellules orchestrent, dans le temps et l’espace, la formation des NMO associés au CME et comment ceux-ci génèrent des forces mécaniques. Mes travaux se concentrent sur les mécanismes de démixtion de phase et d’adhésion de contact dans le processus d’endocytose chez la levure Saccharomyces cerevisiae. Pour enquêter sur le rôle des modifications post-traductionnelles dans ces mécanismes, nous avons premièrement analysé la cinétique de phosphorylation des protéines en conditions de stress. Mes résultats démontrent que le recrutement et la fonction de certaines protéines impliquées dans le CME se régulent via des mécanismes de phosphorylation. Outre les processus de contrôle post-traductionnel, nous avons élucidé le rôle des domaines de faible complexité dans l’assemblage de plusieurs protéines associées avec le CME. De concert avec les modifications de phosphorylation, des domaines d’interaction protéine-protéine de type PrD (du terme « prion-like domains ») modulent directement le recrutement des protéines au sein des NMO associés au CME. La nature intrinsèquement désordonnée de ces PrD favorise un mécanisme d’assemblage des protéines par démixtion de phase tel que postulé. Finalement, mes travaux confirment que la formation de ces NMO spécifiques génère des forces mécaniques qui déforment la membrane plasmique et assurent le processus de CME. D’un point de vue fondamental, mes recherches permettent de mieux comprendre l’évolution d’une stratégie cellulaire pour assembler des compartiments cellulaires sans membrane et pour fixer les dimensions biologiques associées au CME. De manière plus appliquée, cette étude a le potentiel de générer des retombées importantes dans la compréhension et le traitement de maladies neurodégénératives souvent associées à une séparation de phase aberrante et à la formation d’agrégats protéiques liés à la pathologie. / Evolution has resulted in distinct mechanical processes that determine the shapes of living cells and their interactions with each other and with the environment. These molecular mechanisms have contributed to the wide variety of life we observe today. For example, mammalian cells rely on a complex cytoskeleton to adapt specific shapes whereas bacteria, yeast and plants use a combination of turgor pressure and cell walls to have their characteristic bloated form. In this dissertation, I describe my discovery of an unforeseen additional mechanism of morphogenesis: protein aqueous-aqueous phase separation and adhesive contact between biomaterials as a simple and efficient ways for cells to organize internal matter and accomplish work to shape internal structures and surfaces. I specifically describe how a fundamental process of phospholipid membrane and membrane-embedded protein recycling, clathrin-mediated endocytosis (CME), is driven by this mechanism. Analogous to water and oil emulsions, proteins, and biopolymers in general, can phase separate from single to a binary aqueous phase. For proteins that de-mix from the bulk environment, the intermolecular interactions (or cohesive energy) that favors protein condensation only needs to overcome the low mixing entropy of the system and represents a conserved and energy efficient cellular strategy [2, 3, 7, 8]. So far, various examples of phase separated cellular compartments, termed non-membranous organelles (NMOs), have been discovered. These include the nucleoli, germ line P granules and P bodies, to name a few [1-6]. NMOs are involved in many conserved biological processes and can function as storage, bioreactor or signaling bodies. Cells use phase separation as a scheme to organize internal matter, but do NMOs occupy other complex functions, such as morphogenesis? What specific signals trigger protein phase separation? Based on mechanical contact theory, I proposed that hundreds of nanometer- to micron-scale phase separated bodies can deform the cellular environment, both cytoplasm and membranes, through interfacial adhesion. I studied how mechanical contact between a phase-separated protein fluid droplet and CME nucleation sites on membranes drive endocytosis in the model organism budding yeast, Saccharomyces cerevisiae. Specifically, this dissertation describes first, my investigations of post-translational modifications (phosphorylation) of several CME-mediating proteins and the implications of these modifications in regulating CME. I then describe how my efforts to understand what was distinct about the proteins that are phosphorylated led me to propose their phase separation into droplets capable of driving invagination and vesicle formation from plasma membrane. I used fluorescence microscopy, mass spectrometry and micro rheology techniques to respectively determine the spatiotemporal dynamics, phosphorylation modifications and material properties of coalesced CME-mediating proteins. I further investigated how phase separation of these proteins might generate mechanical force. I demonstrate that changes in the phosphorylation of some endocytic proteins regulates their recruitment to CME nucleation sites. We achieved reliable predictions of functional phosphosites by combining information on the conservation of the post-translational modifications with analysis of the proportion of a protein that is dynamically phosphorylated with time. The same dynamically phosphorylated proteins were enriched for low amino acid compositional complexity “prion-like domains”, which we demonstrated were essential to these proteins undergoing aqueous-aqueous phase separation on CME nucleation sites. I then demonstrate how phase separated droplet can produce mechanical work to invaginate membranes and drive CME to completion. In summary, I have discovered a fundamental molecular mechanism by which phase separated biopolymers and membranes could apply work to shape each other. This mechanism determines the natural selection of spatial scale and material properties of CME. Finally, I discuss broader implications of this dissertation to mechanistic understandings of the origins of neurodegenerative diseases, which likely involve pathological forms of protein phase separation and/or aggregation.

Page generated in 0.4441 seconds