Spelling suggestions: "subject:"probabilistic constraints"" "subject:"probabilistica constraints""
1 |
New Solution Methods for Joint Chance-Constrained Stochastic Programs with Random Left-Hand SidesTanner, Matthew W. 16 January 2010 (has links)
We consider joint chance-constrained programs with random lefthand sides.
The motivation of this project is that this class of problem has many important
applications, but there are few existing solution methods. For the most part, we
deal with the subclass of problems for which the underlying parameter distributions
are discrete. This assumption allows the original problem to be formulated as a
deterministic equivalent mixed-integer program.
We rst approach the problem as a mixed-integer program and derive a class
of optimality cuts based on irreducibly infeasible subsets of the constraints of the
scenarios of the problem. The IIS cuts can be computed effciently by means of a
linear program. We give a method for improving the upper bound of the problem
when no IIS cut can be identifi ed. We also give an implementation of an algorithm
incorporating these ideas and finish with some computational results.
We present a tabu search metaheuristic for fi nding good feasible solutions to
the mixed-integer formulation of the problem. Our heuristic works by de ning a
sufficient set of scenarios with the characteristic that all other scenarios do not have
to be considered when generating upper bounds. We then use tabu search on the
one-opt neighborhood of the problem. We give computational results that show our
metaheuristic outperforming the state-of-the-art industrial solvers.
We then show how to reformulate the problem so that the chance-constraints
are monotonic functions. We then derive a convergent global branch-and-bound algorithm using the principles of monotonic optimization. We give a finitely convergent
modi cation of the algorithm. Finally, we give a discussion on why this algorithm is
computationally ine ffective.
The last section of this dissertation details an application of joint chance-constrained
stochastic programs to a vaccination allocation problem. We show why it is necessary
to formulate the problem with random parameters and also why chance-constraints
are a good framework for de fining an optimal policy. We give an example of the problem
formulated as a chance constraint and a short numerical example to illustrate
the concepts.
|
2 |
Chance Constrained Programming : with applications in Energy ManagementVan ackooij, Wim Stefanus 12 December 2013 (has links) (PDF)
In optimization problems involving uncertainty, probabilistic constraints are an important tool for defining safety of decisions. In Energy management, many optimization problems have some underlying uncertainty. In particular this is the case of unit commitment problems. In this Thesis, we will investigate probabilistic constraints from a theoretical, algorithmic and applicative point of view. We provide new insights on differentiability of probabilistic constraints and on convexity results of feasible sets. New variants of bundle methods, both of proximal and level type, specially tailored for convex optimization under probabilistic constraints, are given and convergence shown. Both methods explicitly deal with evaluation errors in both the gradient and value of the probabilistic constraint. We also look at two applications from energy management: cascaded reservoir management with uncertainty on inflows and unit commitment with uncertainty on customer load. In both applications uncertainty is dealt with through the use of probabilistic constraints. The presented numerical results seem to indicate the feasibility of solving an optimization problem with a joint probabilistic constraint on a system having up to 200 constraints. This is roughly the order of magnitude needed in the applications. The differentiability results involve probabilistic constraints on uncertain linear and nonlinear inequality systems. In the latter case a convexity structure in the underlying uncertainty vector is required. The uncertainty vector is assumed to have a multivariate Gaussian or Student law. The provided gradient formulae allow for efficient numerical sampling schemes. For probabilistic constraints that can be rewritten through the use of Copulae, we provide new insights on convexity of the feasible set. These results require a generalized concavity structure of the Copulae, the marginal distribution functions of the underlying random vector and of the underlying inequality system. These generalized concavity properties may hold only on specific sets.
|
3 |
Chance Constrained Programming : with applications in Energy Management / Optimisation sous contrainte probabilistes : et applications en Management d’EnergieVan Ackooij, Wim 12 December 2013 (has links)
Les contraintes en probabilité constituent un modèle pertinent pour gérer les incertitudes dans les problèmes de décision. En management d’énergie de nombreux problèmes d’optimisation ont des incertitudes sous-jacentes. En particulier c’est le cas des problèmes de gestion de la production au court-terme. Dans cette Thèse, nous investiguons les contraintes probabilistes sous l’angle théorique, algorithmique et applicative. Nous donnons quelques nouveaux résultats de différentiabilité des contraintes en probabilité et de convexité des ensembles admissibles. Des nouvelles variantes des méthodes de faisceaux « proximales » et « de niveaux » sont spécialement mises au point pour traiter des problèmes d’optimisation convexe sous contrainte en probabilité. Ces algorithmes gèrent en particulier, les erreurs d’évaluation de la contrainte en probabilité, ainsi que son gradient. La convergence vers une solution du problème est montrée. Enfin, nous examinons deux applications : l’optimisation d’une vallée hydraulique sous incertitude sur les apports et l’optimisation d’un planning de production sous incertitude sur la demande. Dans les deux cas nous utilisons une contrainte en probabilité pour gérer les incertitudes. Les résultats numériques présentés semblent montrer la faisabilité de résoudre des problèmes d’optimisation avec une contrainte en probabilité jointe portant sur un système de environ 200 contraintes. Il s’agit de l’ordre de grandeur nécessaire pour les applications. Les nouveaux résultats de différentiabilité concernent à la fois des contraintes en probabilité portant sur des systèmes linéaires et non-linéaires. Dans le deuxième cas, la convexité dans l’argument représentant le vecteur incertain est requise. Ce vecteur est supposé suivre une loi Gaussienne ou Student multi-variée. Les formules de gradient permettent l’application directe d’un schéma d’évaluation numérique efficient. Pour les contraintes en probabilité qui peuvent se réécrire à l’aide d’une Copule, nous donnons de nouveau résultats de convexité pour l’ensemble admissibles. Ces résultats requirent la concavité généralisée de la Copule, les distributions marginales sous-jacents et du système d’incertitude. Il est suffisant que ces propriétés de concavité généralisée tiennent sur un ensemble spécifique. / In optimization problems involving uncertainty, probabilistic constraints are an important tool for defining safety of decisions. In Energy management, many optimization problems have some underlying uncertainty. In particular this is the case of unit commitment problems. In this Thesis, we will investigate probabilistic constraints from a theoretical, algorithmic and applicative point of view. We provide new insights on differentiability of probabilistic constraints and on convexity results of feasible sets. New variants of bundle methods, both of proximal and level type, specially tailored for convex optimization under probabilistic constraints, are given and convergence shown. Both methods explicitly deal with evaluation errors in both the gradient and value of the probabilistic constraint. We also look at two applications from energy management: cascaded reservoir management with uncertainty on inflows and unit commitment with uncertainty on customer load. In both applications uncertainty is dealt with through the use of probabilistic constraints. The presented numerical results seem to indicate the feasibility of solving an optimization problem with a joint probabilistic constraint on a system having up to 200 constraints. This is roughly the order of magnitude needed in the applications. The differentiability results involve probabilistic constraints on uncertain linear and nonlinear inequality systems. In the latter case a convexity structure in the underlying uncertainty vector is required. The uncertainty vector is assumed to have a multivariate Gaussian or Student law. The provided gradient formulae allow for efficient numerical sampling schemes. For probabilistic constraints that can be rewritten through the use of Copulae, we provide new insights on convexity of the feasible set. These results require a generalized concavity structure of the Copulae, the marginal distribution functions of the underlying random vector and of the underlying inequality system. These generalized concavity properties may hold only on specific sets.
|
4 |
Integer Programming Approaches for Some Non-convex and Stochastic Optimization ProblemsLuedtke, James 30 July 2007 (has links)
In this dissertation we study several non-convex and stochastic optimization problems. The common theme is the use of mixed-integer programming (MIP) techniques including valid inequalities and reformulation to solve these problems.
We first study a strategic capacity planning model which captures the trade-off between the incentive to delay capacity installation to wait for improved technology and the need for some capacity to be installed to meet current demands. This problem is naturally formulated as a MIP with a bilinear objective. We develop several linear MIP formulations, along with classes of strong valid inequalities. We also present a specialized branch-and-cut algorithm to solve a compact concave formulation. Computational results indicate that these formulations can be used to solve large-scale instances.
We next study methods for optimization with joint probabilistic constraints. These problems are challenging because evaluating solution feasibility requires multidimensional integration and the feasible region is not convex. We propose and analyze a Monte Carlo sampling scheme to simplify the probabilistic structure of such problems. Computational tests of the approach indicate that it can yield good feasible solutions and reasonable bounds on their quality. Next, we study a MIP formulation of the non-convex sample approximation problem. We obtain two strengthened formulations. As a byproduct of this analysis, we obtain new results for the previously studied mixing set, subject to an additional knapsack inequality. Computational results indicate that large-scale instances can be solved using the strengthened formulations.
Finally, we study optimization problems with stochastic dominance constraints. A stochastic dominance constraint states that a random outcome which depends on the decision variables should stochastically dominate a given random variable. We present new formulations for both first and second order stochastic dominance which are significantly more compact than existing formulations. Computational tests illustrate the benefits of the new formulations.
|
5 |
Stochastic Optimization under Probust and Dynamic Probabilistic Constraints: with Applications to Energy ManagementGonzález Grandón, Tatiana Carolina 27 August 2019 (has links)
Diese Arbeit liefert, in den ersten beiden Kapiteln einen allgemeinen Überblick über die klassischen Ansätze zur Optimierung unter Unsicherheit mit einem Schwerpunkt auf probabilistischen Randbedingung. Anschließend wird im dritten Kapitel eine neue Klasse von sogenannten Probust Randbedingungen beim Auftreten von Modellen mit unsicheren Parametern mit teilweise stochastischem und teilweise nicht-stochastischem Charakter eingeführt. Wir zeigen dabei die Relevanz dieser Aufgabentypen für zwei Problemstellungen in einem stationären Gasnetz auf. Erstens liegen beim Gastransport probabilistische Randbedingungen bezüglich der Gasnachfrage vor sowie auch robuste Randbedin- gungen bezüglich der Rauheitskoeffizienten in den Rohren, welche in der Regel unbekannt sind, da es keine zuverlässigen Messmöglichkeiten gibt. Zweitens lösen wir ein Problem für einen Netzbetreiber, der zum Ziel hat, die angebotene Kapazität für alte und neue Kunden zu maximieren. In diesem Fall ist man mit einer ungewis- sen Gesamtnachfrage konfrontiert, die sich aus der probabilistischen Nachfrage für Altkunden und der robusten Nachfrage für Neukunden zusammensetzt. Für beide Fälle zeigen wir, wie mit probusten Randbedingungen im Rahmen der sogenannten sphärisch-radialen Zerlegung multivariater Gauß-Verteilungen umgegangen werden kann. Starke und schwache Halbstetigkeitsergebnisse werden für den allgemeinen Fall, in Abhängigkeit davon ob Strategien in Lebesgue oder Sobolev Räumen angenommen werden, erstellt. Für ein ein- faches zweistufiges Modell werden überprüfbare Bedingungen für die Lipschitz- Stetigkeit und die Differenzierbarkeit dieser Wahrscheinlichkeitsfunktion abgeleitet und mit expliziten Ableitungsformeln unterstützt. Diese Werkzeuge werden dann verwendet, um das Problem des Bäckers und zwei Probleme des Wasserkraftmanagements zu lösen. / This thesis offers, in the first and second chapter, a general overview of the classical approaches to solving optimization under uncertainty, with a focus on probabilistic constraints. Then, in the third chapter, a new class of so-called Probust constraints is introduced in the presence of models with uncertain parameters having partially stochastic and partially non-stochastic character. We show the relevance of this class of approach and solve two problems in a stationary gas network. First, in the context of gas transportation, one ends up with a constraint, which is probabilistic with respect to the load of gas and robust with respect to the roughness coefficients of the pipes (which are uncertain due to a lack of attainable measurements). Secondly, we solve a problem for a network operator, who would like to maximize the offered capacity for old and new customers. In this case, one is faced with an uncertain total demand which is probabilistic for old clients and robust for new clients. In both problems, we demonstrate how probust constraints can be dealt within the framework of the so-called spheric-radial decomposition of multivariate Gaussian distributions. Furthermore, in chapter four, we present novel structural and numerical results for optimization problems under a dynamic joint probabilistic constraint. Strong and weak semicontinuity results are obtained for the general case depending on whether policies are supposed to be in Lebesgue or Sobolev spaces. For a simple two-stage model, verifiable conditions for Lipschitz continuity and differentiability of this probability function are derived and endowed with explicit derivative formulae. These tools are then used to solve the Baker's problem and two hydro-power management problems.
|
6 |
Conception combinatoire des lignes de désassemblage sous incertitudes / Combinatorial design of disassembly lines under uncertaintiesBentaha, Mohand Lounes 16 October 2014 (has links)
Les travaux présentés dans ce manuscrit portent sur la conception des lignes de désassemblageen contexte incertain. Une ligne de désassemblage consiste en unesuccession de postes de travail où les tâches sont exécutées séquentiellement au niveau de chaque poste. La conception d'un tel système, de revalorisationdes produits en fin de vie, peut être ramenée à un problème d'optimisation combinatoire.Ce dernier cherche à obtenir une configuration permettant d'optimiser certains objectifs enrespectant des contraintes techniques, économiques et écologiques.Dans un premier temps, nous décrivons les activités principales de la revalorisation des produitsen fin de vie, en particulier le désassemblage. Puis, après présentation des travaux de la littératureportant sur la prise en compte des incertitudes des durées opératoires lors de la conception des lignesde production, nous nous focalisons sur l'étude des incertitudes des durées opératoires des tâches de désassemblage.Ainsi, nous présentons trois modélisations principales avec leurs approches de résolution.La première s'intéresse à la minimisation des arrêts de la ligne causés par les incertitudes des durées des opérationsde désassemblage. La deuxième cherche à garantir un niveau opérationnel de la ligne lié à sa cadence de fonctionnement.Le but de la troisième modélisation est l'intégration des problématiques de conception des ligneset de séquencement des tâches de désassemblage. Enfin, les performances des méthodes de résolutionproposées sont présentées en analysant les résultats d'optimisation sur un ensemble d'instances de taille industrielle. / This thesis is dedicated to the problem of disassembly line design in uncertain context. A disassembly linecan be represented as a succession of workstations where tasks are performed sequentially at each workstation.The design of such a product recovery system can be reduced to a combinatorial optimization problem which seeksa line configuration that optimizes certain objectives under technical, economical and environmental constraints.We begin by describing the principal product recovery activities especially disassembly. Then, after a literaturereview on the design of production lines under uncertainty of task processing times, we focus our study on the consideration of the disassembly task time uncertainties. Hence, we present three main models as well as the associatedsolution approaches. The first one is interested in minimizing the line stoppages caused by the task processing timeuncertainties. The second one seeks to guarantee an operational level closely related with the line speed. The goal of thethird model is to integrate the line design and sequencing problems. At last, the performances of the proposed solutionapproaches are presented by analyzing the optimization results on a set of instances of industrial size.
|
7 |
Stochastic Combinatorial Optimization / Optimisation combinatoire stochastiqueCheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.
|
Page generated in 0.096 seconds