• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 10
  • 2
  • Tagged with
  • 25
  • 25
  • 17
  • 17
  • 17
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-objective optimization of dial a ride problems : modeling and resolution / Optimisation multi-objectifs des problèmes de transport à la demande : modélisation et résolution

Ayadi, Manel 05 October 2015 (has links)
Cette thèse s’intéresse à trouver des solutions informatiques à certains problèmes de l’optimisation combinatoire, à savoir les problèmes de tournées de véhicules. Elle aborde les problèmes de Transport A la Demande (TAD). L’objectif principal visé dans cette thèse fait appel à certaines approches exactes et certaines approches méta-heuristiques pour résoudre des problèmes d’optimisation multi-objective de Transport A la Demande avec plusieurs véhicules. En effet, nos principaux objectifs de recherche consistent à : -I) Résoudre un problème multi-objectif de Transport A La Demande multi-véhicules basé sur la qualité de service ; - II) Résoudre un autre problème de Transport A la Demande multi-objectifs multi-véhicules. Ce problème traite un cas spécifique et qui consiste à l’application de ce problème aux domaines de l’Hospitalisation A Domicile (HAD). Nous avons appliqué des algorithmes exacts de "Branch and Bound" et des méthodes méta-heuristiques telles que l’algorithme évolutionnaire "Algorithme Génétique" et l’algorithme de "Colonie de Fourmis" pour apporter des solutions efficaces à ces différents problèmes. Un ensemble de résultats numériques est présenté pour chacune de ces méthodes pour montrer leurs capacités de produire des solutions de haute qualité en temps de calcul raisonnables. / This thesis focuses on finding computer science solutions for some combinatorial optimization problems, namely Vehicle Routing Problems (VRP). The thesis addresses the Dial A Ride Problems (DARP). Its main objective is to use some exact and meta-heuristics approaches to solve multi-objective optimization of Dial A Ride Problem with multi-vehicles. Hence, our main research aims are : - I)Solve a multi-objective Dial A Ride Problem with multi-vehicles based on quality of service, this problem treats a general case ; - II) Solve another multi-objective Dial A Ride Problem with multi-vehicles, this problem deals with a specific case which is an application of the Dial A Ride Problem in Home Health Care (HHC). We have also applied exact algorithms "Branch and Bound" and meta-heuristic algorithms such as evolutionary algorithms "Genetic Algorithm" and "Ant Colony" algorithm to provide effective solutions to these different problems. A set of numerical results are presented for each of these methods. Our results show that they produce high quality solutions in a reasonable execution time for all the treated problems.
12

Optimisation de problème de tournées de véhicules de service à domicile / Optimization of vehicle routing problem for field service

Liu, Yihan 27 June 2017 (has links)
La performance logistique des entreprises et l’optimisation des transports sont devenues un grand problème ces dernières années. La planification et l’optimisation des services constituent en particulier un nouveau défi. Afin d’accroître la productivité et de réduire les coûts de la logistique, ce travail de recherche contribue à l’optimisation d’un problème de tournées de service à domicile multi-dépôt, multi-période avec fenêtres de temps de vie réelle. Le problème vient d’un contexte réaliste et est formulé comme un modèle en Mixed Integer Programming (MIP). Les résultats avec Cplex montrent que ce problème ne peut être résolu par des méthodes exactes dans un délai raisonnable pour une utilisation pratique. Par conséquent, nous introduisons des heuristiques. Premièrement, les heuristiques de recherche locales sont utilisées pour résoudre le problème. Les solutions réalisables initiales sont générées par une heuristique de construction et plusieurs heuristiques de recherche locales sont appliquées pour obtenir des solutions dans un temps de calcul assez court. Ensuite, nous proposons un algorithme génétique avec une nouvelle représentation du chromosome et de nouveaux opérateurs génétiques pour le problème abordé. Enfin, nous considérons un algorithme génétique avec contrôle de la diversité pour problèmes à grande échelle. Les solutions infaisables sont prises en compte dans la population et la contribution à la diversité fait partie de l’évaluation afin d’éviter une recherche prématurée. Ces méthodes ont été mises en œuvre avec succès pour optimiser le problème de routage. / The logistics performance of enterprises and the optimization of transportation have become a great issue in recent years. Field force planning and optimization is a new challenge for the service sector. In order to increase productivity and reduce cost of logistics, this research contributes to the optimization of a real-life multi-depot multi-period field service routing problem with time window. The problem is abstracted from the realistic problem and formulated as a Mixed Integer Programming (MIP) model. Computational results with Cplex show that this problem cannot be solved by exact methods in reasonable time for practical use. First, local search heuristics are used for solving the problem. Initial feasible solutions are generated by a constructive heuristic and several local search heuristics are applied to obtain solutions in a very short computing time. Then we propose a genetic algorithm with new representation of chromosome and new genetic operators for the addressed problem. Finally we consider a genetic algorithm with diversity control to deal with large scale problems. Infeasible solutions are taken account in the population and the diversity contribution is part of the evaluation to avoid premature of search. These methods have been successfully implemented to the optimization of the routing problem
13

Modélisation et résolution de problèmes généralisés de tournées de véhicules

Ha, Minh Hoang 14 December 2012 (has links) (PDF)
Le problème de tournées de véhicules est un des problèmes d'optimisation combinatoire les plus connus et les plus difficiles. Il s'agit de déterminer les tournées optimales pour une flotte de véhicules afin de servir un ensemble donné de clients. Dans les problèmes classiques de transport, chaque client est normalement servi à partir d'un seul nœud (ou arc). Pour cela, on définit toujours un ensemble donné de nœuds (ou arcs) obligatoires à visiter ou traverser, et on recherche la solution à partir de cet ensemble de nœuds (ou arcs). Mais dans plusieurs applications réelles où un client peut être servi à partir de plus d'un nœud, (ou arc), les problèmes généralisés qui en résultent sont plus complexes. Le but principal de cette thèse est d'étudier trois problèmes généralisés de tournées de véhicules. Le premier problème de la tournée sur arcs suffisamment proche (CEARP), comporte une application réelle intéressante en routage pour le relevé des compteurs à distance ; les deux autres problèmes, problème de tournées couvrantes multi-véhicules (mCTP) et problème généralisé de tournées sur nœuds (GVRP), permettent de modéliser des problèmes de conception des réseaux de transport à deux niveaux. Pour résoudre ces problèmes, nous proposons une approche exacte ainsi que des métaheuristiques. Pour développer la méthode exacte, nous formulons chaque problème comme un programme mathématique, puis nous construisons des algorithmes de type branchement et coupes. Les métaheuristiques sont basées sur le ELS (ou Evolutionary Local Search) et sur le GRASP (ou Greedy Randomized Adaptive Search Procedure). De nombreuses expérimentations montrent la performance de nos méthodes.
14

Étude d'un problème de tournées de véhicules sur les arcs avec contraintes de capacité et coûts de service dépendants du temps

Tagmouti, Mariam January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
15

Optimisation de la chaine logistique des déchets non dangereux / Non hazardous waste supply chain optimization

Tonneau, Quentin Adrien 18 December 2017 (has links)
Avec plus de 345 millions de tonnes de déchets produits en France en 2012, la performance de la chaîne logistique de collecte, transport et traitement de ces produits et matériaux est devenue un enjeu économique et écologique majeur dans notre société. Dans cette thèse, nous nous intéressons à l’optimisation de la chaîne de collecte et transport des déchets sur le plan tactique et opérationnel. Nous modélisons dans un premier temps un nouveau problème tactique d’optimisation de flux de déchets avec sites de transfert et de traitement sur un horizon mono-périodique puis multi-périodique, afin d’exploiter un réseau logistique existant de manière optimale. Nous résolvons différentes variantes de ce problème linéaire mixte à l’aide d’un solveur. Nous étudions dans un second temps la planification opérationnelle de la collecte de conteneurs d’apport volontaire et des tournées de véhicules associées en résolvant un problème riche de tournées avec gestion de stocks et plateformes de vidage intermédiaires. Nous proposons un modèle d’optimisation de ce nouveau problème et le résolvons par un algorithme à voisinages larges (ALNS) dans un cadre déterministe puis stochastique, dans lequel le remplissage des conteneurs est aléatoire et plus conforme à la réalité. Nous obtenons des résultats compétitifs en évaluant notre approche sur des instances de la littérature proches de notre problème riche. En réalisant un logiciel d’optimisation à destination d’une entreprise de collecte et transport de déchets, nous améliorons également de manière significative les tournées de véhicules en application réelle. / With more than 345 million tons produced in France in2012, waste supply chain management is an important economical and ecological issue for our society. In this thesis, we focus on optimizing waste supply chain on both the tactical and operational decision levels. In order to optimize an existing waste logistic network in medium term, we first solve a multimodal flow problem where products are transferred and transformed in sites of various size, in a mono-periodic then multi-periodic horizon. At an operational level, we study the planning and routing of vehicles used for voluntary drop-off waste container collection by solving a complex inventory routing problem with intermediate facilities. We use a large neighborhoods search metaheuristic to solve both the deterministic and stochastic approaches, where waste supply quantity is also subject to uncertainty. We obtain competitive results on instances coming from the literature on classical routing problems close to our rich case. We also develop an optimization software used by a French waste management company and significantly improve routes in a real application.
16

Tactical Vehicle Routing Planning with Application to Milk Collection and Distribution

Dayarian, Iman 12 1900 (has links)
De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre. Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré. Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources. Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire. / Many practical problems arising in real-world applications in the field of logistics can be modeled as vehicle routing problems (VRP). In broad terms, VRPs deal with designing optimal routes for delivering goods or services to a number of geographically scattered customers in a context in which, routing costs are minimized. Depending on the type of problem, one or several depots may be present. Routing problems are among the most difficult combinatorial optimization problems. In this dissertation we study a special combinatorial optimization problem, belonging to the class of the vehicle routing problem that is strongly linked to the context of the transportation networks. We introduce a new problem setting, which is mainly inspired by the activities of collecting milk from production farms and distributing the collected product to processing plants in Quebec. Two different variants of this problem setting are considered. The first variant seeks a tactical routing plan for the milk collection-distribution problem over a given planning horizon assuming that the production level over the considered horizon is fixed. The second variant aims to provide a more accurate plan by taking into account potential variations in terms of production level, which may occur during the course of a horizon. This thesis is cast into three main parts, as follows: In the first part, we describe an exact algorithm for the first variant of the problem, which is characterized by the presence of time windows, multiple depots, and a heterogeneous fleet of vehicles, where the objective is to minimize the routing cost. To this end, the problem is modeled as a multi-attribute vehicle routing problem. The exact algorithm proposed is based on the column generation approach, coupled with an elementary shortest path algorithm with resource constraints. In the second part, we design an exact framework to address the second variant of the problem. To this end, the problem is modeled as a multi-period vehicle routing problem, which explicitly takes into account potential production level variations over a horizon. New strategies are proposed to tackle the particular structure of the multi-period elementary shortest path algorithm with resource constraints. To solve realistic instances of the second variant of the problem in reasonable computation times, a heuristic approach is required. In the third part of this thesis, we propose an adaptive large neighborhood search, where various new exploration and exploitation strategies are proposed to improve the performance of the algorithm in terms of solution quality and computational efficiency.
17

Tactical Vehicle Routing Planning with Application to Milk Collection and Distribution

Dayarian, Iman 12 1900 (has links)
De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre. Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré. Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources. Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire. / Many practical problems arising in real-world applications in the field of logistics can be modeled as vehicle routing problems (VRP). In broad terms, VRPs deal with designing optimal routes for delivering goods or services to a number of geographically scattered customers in a context in which, routing costs are minimized. Depending on the type of problem, one or several depots may be present. Routing problems are among the most difficult combinatorial optimization problems. In this dissertation we study a special combinatorial optimization problem, belonging to the class of the vehicle routing problem that is strongly linked to the context of the transportation networks. We introduce a new problem setting, which is mainly inspired by the activities of collecting milk from production farms and distributing the collected product to processing plants in Quebec. Two different variants of this problem setting are considered. The first variant seeks a tactical routing plan for the milk collection-distribution problem over a given planning horizon assuming that the production level over the considered horizon is fixed. The second variant aims to provide a more accurate plan by taking into account potential variations in terms of production level, which may occur during the course of a horizon. This thesis is cast into three main parts, as follows: In the first part, we describe an exact algorithm for the first variant of the problem, which is characterized by the presence of time windows, multiple depots, and a heterogeneous fleet of vehicles, where the objective is to minimize the routing cost. To this end, the problem is modeled as a multi-attribute vehicle routing problem. The exact algorithm proposed is based on the column generation approach, coupled with an elementary shortest path algorithm with resource constraints. In the second part, we design an exact framework to address the second variant of the problem. To this end, the problem is modeled as a multi-period vehicle routing problem, which explicitly takes into account potential production level variations over a horizon. New strategies are proposed to tackle the particular structure of the multi-period elementary shortest path algorithm with resource constraints. To solve realistic instances of the second variant of the problem in reasonable computation times, a heuristic approach is required. In the third part of this thesis, we propose an adaptive large neighborhood search, where various new exploration and exploitation strategies are proposed to improve the performance of the algorithm in terms of solution quality and computational efficiency.
18

Approches générales de résolution pour les problèmes multi-attributs de tournées de véhicules et confection d'horaires

Vidal, Thibaut 03 1900 (has links)
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes / Le problème de tournées de véhicules (VRP) implique de planifier les itinéraires d'une flotte de véhicules afin de desservir un ensemble de clients à moindre coût. Ce problème d'optimisation combinatoire NP-difficile apparait dans de nombreux domaines d'application, notamment en logistique, télécommunications, robotique ou gestion de crise dans des contextes militaires et humanitaires. Ces applications amènent différents contraintes, objectifs et décisions supplémentaires ; des "attributs" qui viennent compléter les formulations classiques du problème. Les nombreux VRP Multi-Attributs (MAVRP) qui s'ensuivent sont le support d'une littérature considérable, mais qui manque de méthodes généralistes capables de traiter efficacement un éventail significatif de variantes. Par ailleurs, la résolution de problèmes "riches", combinant de nombreux attributs, pose d'importantes difficultés méthodologiques. Cette thèse contribue à relever ces défis par le biais d'analyses structurelles des problèmes, de développements de stratégies métaheuristiques, et de méthodes unifiées. Nous présentons tout d'abord une étude transversale des concepts à succès de 64 méta-heuristiques pour 15 MAVRP afin d'en cerner les "stratégies gagnantes". Puis, nous analysons les problèmes et algorithmes d'ajustement d'horaires en présence d'une séquence de tâches fixée, appelés problèmes de "timing". Ces méthodes, développées indépendamment dans différents domaines de recherche liés au transport, ordonnancement, allocation de ressource et même régression isotonique, sont unifiés dans une revue multidisciplinaire. Un algorithme génétique hybride efficace est ensuite proposé, combinant l'exploration large des méthodes évolutionnaires, les capacités d'amélioration agressive des métaheuristiques à voisinage, et une évaluation bi-critère des solutions considérant coût et contribution à la diversité de la population. Les meilleures solutions connues de la littérature sont retrouvées ou améliorées pour le VRP classique ainsi que des variantes avec multiples dépôts et périodes. La méthode est étendue aux VRP avec contraintes de fenêtres de temps, durée de route, et horaires de conducteurs. Ces applications mettent en jeu de nouvelles méthodes d'évaluation efficaces de contraintes temporelles relaxées, des phases de décomposition, et des recherches arborescentes pour l'insertion des pauses des conducteurs. Un algorithme de gestion implicite du placement des dépôts au cours de recherches locales, par programmation dynamique, est aussi proposé. Des études expérimentales approfondies démontrent la contribution notable des nouvelles stratégies au sein de plusieurs cadres méta-heuristiques. Afin de traiter la variété des attributs, un cadre de résolution heuristique modulaire est présenté ainsi qu'un algorithme génétique hybride unifié (UHGS). Les attributs sont gérés par des composants élémentaires adaptatifs. Des expérimentations sur 26 variantes du VRP et 39 groupes d'instances démontrent la performance remarquable de UHGS qui, avec une unique implémentation et paramétrage, égalise ou surpasse les nombreux algorithmes dédiés, issus de plus de 180 articles, révélant ainsi que la généralité ne s'obtient pas forcément aux dépends de l'efficacité pour cette classe de problèmes. Enfin, pour traiter les problèmes riches, UHGS est étendu au sein d'un cadre de résolution parallèle coopératif à base de décomposition, d'intégration de solutions partielles, et de recherche guidée. L'ensemble de ces travaux permet de jeter un nouveau regard sur les MAVRP et les problèmes de timing, leur résolution par des méthodes méta-heuristiques, ainsi que les méthodes généralistes pour l'optimisation combinatoire. / The Vehicle Routing Problem (VRP) involves designing least cost delivery routes to service a geographically-dispersed set of customers while taking into account vehicle-capacity constraints. This NP-hard combinatorial optimization problem is linked with multiple applications in logistics, telecommunications, robotics, crisis management in military and humanitarian frameworks, among others. Practical routing applications are usually quite distinct from the academic cases, encompassing additional sets of specific constraints, objectives and decisions which breed further new problem variants. The resulting "Multi-Attribute" Vehicle Routing Problems (MAVRP) are the support of a vast literature which, however, lacks unified methods capable of addressing multiple MAVRP. In addition, some "rich" VRPs, i.e. those that involve several attributes, may be difficult to address because of the wide array of combined and possibly antagonistic decisions they require. This thesis contributes to address these challenges by means of problem structure analysis, new metaheuristics and unified method developments. The "winning strategies" of 64 state-of-the-art algorithms for 15 different MAVRP are scrutinized in a unifying review. Another analysis is targeted on "timing" problems and algorithms for adjusting the execution dates of a given sequence of tasks. Such methods, independently studied in different research domains related to routing, scheduling, resource allocation, and even isotonic regression are here surveyed in a multidisciplinary review. A Hybrid Genetic Search with Advanced Diversity Control (HGSADC) is then introduced, which combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and a bi-criteria evaluation of solutions based on cost and diversity measures. Results of remarkable quality are achieved on classic benchmark instances of the capacitated VRP, the multi-depot VRP, and the periodic VRP. Further extensions of the method to VRP variants with constraints on time windows, limited route duration, and truck drivers' statutory pauses are also proposed. New route and neighborhood evaluation procedures are introduced to manage penalized infeasible solutions w.r.t. to time-window and duration constraints. Tree-search procedures are used for drivers' rest scheduling, as well as advanced search limitation strategies, memories and decomposition phases. A dynamic programming-based neighborhood search is introduced to optimally select the depot, vehicle type, and first customer visited in the route during local searches. The notable contribution of these new methodological elements is assessed within two different metaheuristic frameworks. To further advance general-purpose MAVRP methods, we introduce a new component-based heuristic resolution framework and a Unified Hybrid Genetic Search (UHGS), which relies on modular self-adaptive components for addressing problem specifics. Computational experiments demonstrate the groundbreaking performance of UHGS. With a single implementation, unique parameter setting and termination criterion, this algorithm matches or outperforms all current problem-tailored methods from more than 180 articles, on 26 vehicle routing variants and 39 benchmark sets. To address rich problems, UHGS was included in a new parallel cooperative solution framework called "Integrative Cooperative Search (ICS)", based on problem decompositions, partial solutions integration, and global search guidance. This compendium of results provides a novel view on a wide range of MAVRP and timing problems, on efficient heuristic searches, and on general-purpose solution methods for combinatorial optimization problems.
19

Modélisation et résolution de problèmes généralisés de tournées de véhicules / Modeling and solving the generalized routing problems

Ha, Minh Hoang 14 December 2012 (has links)
Le problème de tournées de véhicules est un des problèmes d’optimisation combinatoire les plus connus et les plus difficiles. Il s’agit de déterminer les tournées optimales pour une flotte de véhicules afin de servir un ensemble donné de clients. Dans les problèmes classiques de transport, chaque client est normalement servi à partir d’un seul nœud (ou arc). Pour cela, on définit toujours un ensemble donné de nœuds (ou arcs) obligatoires à visiter ou traverser, et on recherche la solution à partir de cet ensemble de nœuds (ou arcs). Mais dans plusieurs applications réelles où un client peut être servi à partir de plus d’un nœud, (ou arc), les problèmes généralisés qui en résultent sont plus complexes. Le but principal de cette thèse est d’étudier trois problèmes généralisés de tournées de véhicules. Le premier problème de la tournée sur arcs suffisamment proche (CEARP), comporte une application réelle intéressante en routage pour le relevé des compteurs à distance ; les deux autres problèmes, problème de tournées couvrantes multi-véhicules (mCTP) et problème généralisé de tournées sur nœuds (GVRP), permettent de modéliser des problèmes de conception des réseaux de transport à deux niveaux. Pour résoudre ces problèmes, nous proposons une approche exacte ainsi que des métaheuristiques. Pour développer la méthode exacte, nous formulons chaque problème comme un programme mathématique, puis nous construisons des algorithmes de type branchement et coupes. Les métaheuristiques sont basées sur le ELS (ou Evolutionary Local Search) et sur le GRASP (ou Greedy Randomized Adaptive Search Procedure). De nombreuses expérimentations montrent la performance de nos méthodes. / The Routing Problem is one of the most popular and challenging combinatorial optimization problems. It involves finding the optimal set of routes for fleet of vehicles in order to serve a given set of customers. In the classic transportation problems, each customer is normally served by only one node (or arc). Therefore, there is always a given set of required nodes (or arcs) that have to be visited or traversed, and we just need to find the solution from this set of nodes (or arcs). But in many real applications where a customer can be served by from more than one node (or arc), the generalized resulting problems are more complex. The primary goal of this thesis is to study three generalized routing problems. The first one, the Close-Enough Arc Routing Problem(CEARP), has an interesting real-life application to routing for meter reading while the others two, the multi-vehicle Covering Tour Problem (mCTP) and the Generalized Vehicle Routing Problem(GVRP), can model problems concerned with the design of bilevel transportation networks. The problems are solved by exact methods as well as metaheuristics. To develop exact methods, we formulate each problem as a mathematical program, and then develop branch-and-cut algorithms. The metaheuristics are based on the evolutionary local search (ELS) method et on the greedy randomized adaptive search procedure (GRASP) method. The extensive computational experiments show the performance of our methods.
20

An evidential answer for the capacitated vehicle routing problem with uncertain demands / Une réponse évidentielle pour le problème de tournée de véhicules avec contrainte de capacité et demandes incertaines

Helal, Nathalie 20 December 2017 (has links)
Le problème de tournées de véhicules avec contrainte de capacité est un problème important en optimisation combinatoire. L'objectif du problème est de déterminer l'ensemble des routes, nécessaire pour servir les demandes déterministes des clients ayant un cout minimal, tout en respectant la capacité limite des véhicules. Cependant, dans de nombreuses applications réelles, nous sommes confrontés à des incertitudes sur les demandes des clients. La plupart des travaux qui ont traité ce problème ont supposé que les demandes des clients étaient des variables aléatoires. Nous nous proposons dans cette thèse de représenter l'incertitude sur les demandes des clients dans le cadre de la théorie de l'évidence - un formalisme alternatif pour modéliser les incertitudes. Pour résoudre le problème d'optimisation qui résulte, nous généralisons les approches de modélisation classiques en programmation stochastique. Précisément, nous proposons deux modèles pour ce problème. Le premier modèle, est une extension de l'approche chance-constrained programming, qui impose des bornes minimales pour la croyance et la plausibilité que la somme des demandes sur chaque route respecte la capacité des véhicules. Le deuxième modèle étend l'approche stochastic programming with recourse: l'incertitude sur les recours (actions correctives) possibles sur chaque route est représentée par une fonction de croyance et le coût d'une route est alors son coût classique (sans recours) additionné du pire coût espéré des recours. Certaines propriétés de ces deux modèles sont étudiées. Un algorithme de recuit simulé est adapté pour résoudre les deux modèles et est testé expérimentalement. / The capacitated vehicle routing problem is an important combinatorial optimisation problem. Its objective is to find a set of routes of minimum cost, such that a fleet of vehicles initially located at a depot service the deterministic demands of a set of customers, while respecting capacity limits of the vehicles. Still, in many real-life applications, we are faced with uncertainty on customer demands. Most of the research papers that handled this situation, assumed that customer demands are random variables. In this thesis, we propose to represent uncertainty on customer demands using evidence theory - an alternative uncertainty theory. To tackle the resulting optimisation problem, we extend classical stochastic programming modelling approaches. Specifically, we propose two models for this problem. The first model is an extension of the chance-constrained programming approach, which imposes certain minimum bounds on the belief and plausibility that the sum of the demands on each route respects the vehicle capacity. The second model extends the stochastic programming with recourse approach: it represents by a belief function for each route the uncertainty on its recourses (corrective actions) and defines the cost of a route as its classical cost (without recourse) plus the worst expected cost of its recourses. Some properties of these two models are studied. A simulated annealing algorithm is adapted to solve both models and is experimentally tested.

Page generated in 0.0735 seconds