• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 5
  • 3
  • Tagged with
  • 57
  • 57
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modelo de colas con vacancias e interrupciones en el servidor bajo procesos de Lévy

Atoche Díaz, Wilmer Jhonny 03 February 2017 (has links)
Los modelos de colas tradicionales se concentran en el comportamiento de los clientes, desde que arriban al sistema, esperan ser atendidos, se atienden y salen del sistema. Los clientes entran y esperan a ser atendidos en una fila de espera (cola), cuando el servidor está ocupado. Siempre se asume que el servidor que se desocupa está disponible para atender al primero de la fila de espera. El presente trabajo se basa en los estudios de Kella et al. (2010) y de Wu et al. (2015), centrándose en el estudio de la carga de trabajo en el servidor, considerando llegadas, salidas, fallas y vacancias en el servidor. Esta forma de estudiar el comportamiento de la carga de trabajo en el servidor hace que el modelo aplicado se ajuste mejor a la realidad. La tesis se encuentra dividida en cinco capítulos. En el segundo capítulo, denominado Preliminares, se describe un proceso básico de colas para definir los elementos que lo componen, la terminología y la notación que usamos en un sistema de colas, luego bajo el modelo de nacimiento y muerte se desarrolla el modelo M/M/1/K, que nos muestra en forma estable e ideal las cantidades fundamentales de un sistema de colas. Finalmente, se definen las interrupciones del servicio por fallas y vacancias en el servidor. En el tercer capítulo, denominado Procesos de Lévy, se presenta la teoría de procesos estocásticos, procesos de Lévy, procesos de Lévy espectralmente positivos y colas con entradas de Lévy, las definiciones y teoremas nos permiten modelar posteriormente. En el cuarto capítulo, es donde se formula el modelo, se desarrolla el estudio de la distribución de estado estacionario, la distribución transitoria y la descomposición estocástica. En el quinto capítulo, denominado Simulación, se ilustra la simulación de la carga de trabajo basado en un proceso de Lévy de incrementos dados por una distribución gamma, la tasa de servicio permanece constante, las fallas y vacancias son procesos de renovación. En este capítulo también se muestra la caracterización del modelo, así como su respectiva media y varianza. El sexto y último capítulo presenta las conclusiones y las futuras investigaciones que se podrían realizar a partir del presente trabajo. / Tesis
42

Optimización de portafolios de inversión a través del valor en riesgo condicional (CVAR) utilizando cópulas en pares

Navarrete Álvarez, Pablo Isaac 17 April 2013 (has links)
En la presente tesis se demuestran de manera exhaustiva las principales propiedades del CVaR presentadas en los trabajos de Rockafellar y Uryasev (2000, 2002). En particular, se completan las demostraciones del teorema a través del cual se puede minimizar al CVaR utilizando la función auxiliar F®. Estos resultados se mantienen cuando la función de distribución de pérdidas presenta discontinuidades e incluso saltos. Además, se demuestra que el CVaR es continuo con respecto al nivel de confianza elegido y se demuestra que es una medida de riesgo coherente. Por otro lado, se realiza la optimización de un portafolio de inversión utilizando al CVaR como medida de riesgo. Dado que la evidencia estadística muestra que los activos no siguen un comportamiento gaussiano, se utiliza la teoría de cópulas para modelar la dependencia contemporánea de los datos. Finalmente, se comparan los resultados obtenidos de la optimización del modelo media-varianza de Markowitz (M-V) frente a los obtenidos en el modelo media-CVaR (M-CVaR). / Tesis
43

Cambio de fase en el proceso de contacto sobre Zd

Oliveros Ramos, David Ricardo 24 April 2015 (has links)
El proceso de contacto en un tipo de proceso de Markov en tiempo continuo para el cual el espacio de estados, también llamados configuraciones, es X = {0, 1} Z d y en el cual cada coordenada de una configuración del proceso pasa de 1 a 0 a una tasa constante igual a 1, y el paso de 0 a 1 es proporcional a la cantidad de unos en las coordenadas vecinas, siendo λ la constante de proporcionalidad que parametriza el modelo. En este trabajo se muestra que el proceso de contacto puede ser construido formalmente a partir de la descripción anterior de las tasas de transición entre las configuraciones, mostrando además que existe un único proceso de Markov definido por tales tasas. Se utilizaron algunas técnicas básicas para el estudio de sistemas de partículas en interacción (monotonicidad, acoplamiento, dualidad) que permitieron demostrar algunas propiedades del proceso de contacto, como la autodualidad y la monotonía de la ergodicidad con respecto al parámetro del proceso. El resultado principal es mostrar que en una dimensión (d = 1) existe un parámetro crítico finito (λc) que determina un cambio de fase para la ergodicidad del proceso, siendo ergódico si λ < λc y que existen al menos dos medidas invariantes para el proceso si λ > λc. Este resultado se generaliza para el proceso en d dimensiones, mostrando que el parámetro crítico λd está acotado por 1/ 2d ≤ λd ≤ 2/d . / Tesis
44

Multi-scale image inpainting with label selection based on local statistics

Paredes Zevallos, Daniel Leoncio 09 September 2014 (has links)
We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting. / Tesis
45

Teorema fundamental sobre valoración de activos en tiempo discreto y finito

Chávez Melgarje, John Dorian 23 November 2015 (has links)
El teorema fundamental de valoración de activos caracteriza modelos de mercados financieros libre de arbitraje; es decir, aquellos en los que no es posible generar utilidades libres de riesgo sin una inversión inicial. En términos generales, el teorema fundamental de valoración de activos afirma que un modelo de mercado es libre de arbitraje, sí y solo si, todos los activos en el modelo pueden tener un precio de una manera coherente. Es bien conocido el modelo clásico libre de fricción, que se trabaja en ausencia de costos de transacción y con tasas de interés de depósito y crédito iguales, que fue establecido por Harrison y Pliska en 1981 [5]. Jouini y Kallal en 1995, [6] Y [7], fueron los primeros en extender el teorema fundamental de valoración de activos incorporando costos de transacción proporcionales, conteniendo un stock con riesgo y una cuenta de banco libre de riesgo; en este modelo el mercado es libre de arbitraje, sí y solo si, existe una medida de probabilidad ]ID bajo la cual el proceso de precios del stock descontados por la tasa de interés de la cuenta de banco, es una martingala. La colección de tales medidas de probabilidad juega un rol fundamental en la determinación de los precios del activo. El propósito del presente trabajo consiste en desarrollar la propuesta de Alet Roux [11], quién extiende el teorema fundamental de valoración de activos hacia un modelo en el cual, el precio de un stock con riesgo S¡ está sujeto a costos de transacción proporcionales, en el sentido de que el precio de venta Sf de este stock es menor o igual al de compra Sf y además la cuenta de banco tiene una tasa de interés de depósito 7't menor o igual a la de crédito rf. En el artículo de Alet Roux [12], el autor extiende el teorema fundamental de valoración de activos para n activos, con costos de transacción proporcionales y tasas de interés y depósitos diferentes. Además, presenta una demostración alternativa a la aquí presentada en una de las implicaciones del teorema. Será el principal objetivo del presente trabajo presentar con detalle la demostración de que el proceso de precios descontados por la tasa de interés de depósito o crédito es libre de arbitraje sí y solo si éste puede ser expresado como una martingala bajo alguna medida de probabilidad equivalente P. Este documento está organizado de tal forma que en el capítulo 2, se presentan las definiciones necesarias sobre las estrategias de negociación de activos con la finalidad de maximizar utilidades y algunos lemas y proposiciones que son indispensables para su posterior aplicación en el capítulo siguiente. En el capítulo 3, se desarrolla la prueba del teorema fundamental de valoración de activos bajo costos de transacción proporcionales en tiempo discreto y finito. Finalmente, en el apéndice se incluyen algunas definiciones y resultados básicos que se aplican en el desarrollo de los capítulos anteriores. / Tesis
46

Procesos de Lévy: propiedades e integración estocástica

Chávez Bedoya Mercado, Luis Carlos 14 June 2011 (has links)
Los procesos de Lévy son procesos estocásticos que poseen incrementos estacionarios e independientes, y además son continuos en probabilidad. Muchas de las investigaciones teóricas y aplicaciones actuales de los procesos estocásticos en ingeniería, economía y finanzas están basadas en procesos de Lévy; tomamos esto como motivación para profundizar en el estudio de dichos procesos así como para difundir sus aspectos teóricos y prácticos. Asimismo, el cálculo estocástico es una de las principales herramientas teóricas en muchos campos, en especial las finanzas y más precisamente la valuación de instrumentos derivados. Uno de los resultados fundamentales del cálculo estocástico es la fórmula de Ito, cuya validez más allá del movimiento browniano, siendo lógica y necesaria su extensión a procesos de Lévy. Los objetivos de la presente tesis son los siguientes: (1) Enunciar y demostrar las principales propiedades de los procesos de Lévy. (2) Demostrar la descomposición de Lévy-Ito. (3) Desarrollar la teoría básica de integración estocástica cuando se tiene como integrador medidas martingala valuadas. (4) Demostrar la fórmula de Ito para procesos de Lévy. (5) Describir algunas aplicaciones de los procesos de Lévy en finanzas. El presente trabajo se encuentra dividido en cuatro capítulos. En el primer capítulo se presentan conceptos y definiciones importantes previos al estudio de los procesos de Lévy, los cuales serán de suma importancia y utilidad en los capítulos siguientes. Se desarrolla el proceso de Poisson y sus propiedades más importantes. Posteriormente, se hace una breve introducción a la convolución de medidas de probabilidad y las variables aleatorias infinitamente divisibles, terminando en la demostración parcial (la prueba se completa en el Capítulo 2, basándose en la descomposición de Ito-Lévy) de la celebrada fórmula de Lévy-Khintchine, la cual establece que toda medida de probabilidad en R que es infinitamente divisible tiene una función característica de la siguiente forma: φµ(u) = exp imu − σ 2u 2 + Z R−{0} [e iuy − 1 − iuy1 {|y|<1} (y) v*(dy), donde v* es una medida definida en R- {0}, la cual cumple que ZR-{0} (|y|2 1) v* 8dy) < ∞, m ∈ R, σ 2 > 0 y u ∈ R. El capítulo concluye con la demostración de un teorema que 6 afirma que cualquier medida de probabilidad infinitamente divisible puede ser obtenida como el límite en distribución de una sucesión de procesos de Poisson compuestos. En el Capítulo 2 se demuestran las propiedades más importantes de los procesos de Lévy, algunas de ellas son: divisibilidad infinita, una modificación de un proceso Lévy es un proceso de Lévy, todo proceso de Lévy tiene una modificación cadlag y todo proceso de Lévy es un proceso de Markov fuerte. Posteriormente, se realiza el estudio de los saltos de un proceso de Lévy, se definen y enuncian las propiedades de la medida salto y se define la integración Poisson. Finalmente, y después de resultados previos se demuestra la descomposición de Lévy-Ito, la cual afirma que si η un proceso de Lévy, entonces existe b ∈ R, un movimiento browniano B y una medida de Poisson N en R+ ×(R− {0}), independiente de B, tal que para todo t ≥ 0; η(t) = bt + B(t) + Z |x|<a xÑ(t,dx) + Z|x|>a xN (t,dx), con a> 0, es decir que un proceso de Lévy se puede descomponer en la suma de un movimiento browiniano, saltos compensados menores que a, saltos mayores que a y un componente de tendencia bt. En el Capítulo 3 se desarrolla la teoría de integración estocástica, pero teniendo como integrador a medidas martingala valuadas. Se desarrolla la teoría L 2 , demostrando las principales propiedades de la integral estocástica, para después extender la teoría de integración a una clase más general de funciones. Posteriormente, se mencionan algunos tipos de integrales basadas en procesos de Lévy, como son las integrales estocásticas brownianas, las integrales estocásticas del tipo Poisson y las integrales estocásticas del tipo Lévy. El principal resultado de este capítulo es la demostración de la fórmula de Ito para integrales del tipo Lévy, habiendo desarrollado antes de ello la fórmula de Ito para integrales brownianas y Poisson. En el Capítulo 4 se muestran dos aplicaciones de los procesos de Lévy en finanzas. La primera es la descripción y demostración de las principales propiedades de un modelo de precios y la segunda es la comparación de tres modelos de retornos de acciones en un mercado financiero de poca liquidez. Asimismo, en los dos apéndices se demuestran y/o enuncian resultados que son utilizados en las demostraciones de los cuatro capítulos. Si bien es cierto que los resultados que se presentan han sido demostrados y/o mencionados en la literatura, el principal aporte de la presente tesis consiste en brindar una introducción coherente, accesible, completa y sobre todo autocontenida de los procesos de Lévy y la derivación de la fórmula de Itˆo para procesos de Lévy. Esto es importante, ´ debido a que la complejidad y los diversos enfoques sobre el tema hacen difícil que se pueda dar un desarrollo completo y detallado utilizando una notación uniforme. Los resultados de los primeros tres capítulos se encuentran en diverso grado de dificultad y formalismo en Applebaum [1], Protter [14], Cont y Tankov [6], Oksendal y Sulem [13], Sato [16], Bertoin [3] y El Karoui y Méléard [7]. Sólo en los principales resultados de la tesis se indican la(s) fuente(s) de las que han sido tomados y el aporte hecho en cada demostración; aunque varios de los resultados y definiciones han sido completados y/o clarificados respecto a su versión original, sin ser ésto mencionado en el trabajo. / Tesis
47

Integración estocástica y tiempo local

Mogollón Aparicio, Juan Arturo 20 February 2018 (has links)
En el presente trabajo presentamos una construcción del movimiento browniano para lo cual probaremos en forma detallada los teoremas de extensión de Kolmogorov y el de Kolmogorov-Censot, luego hacemos una construcción detallada y autocontenida de la integral estocástica en la que los integradores son martingalas continuas cuadrado integrables. Esta es una posible extensión a la clásica integral de Itô en la cual el integrador es un movimiento browniano. En este contexto de integración estocástica enunciaremos y probaremos la fórmula de Itô y algunas de sus consecuencias. Finalmente trabajaremos con el tiempo local, la fórmula de Tanaka y estudiaremos una particular prueba. / In this investigation we show a construction of the Brownian motion, which includes detailed proofs of the Kolmogorov's extension theorem and Kolmogorov-Censot theorem. In addition, we will show a detailed construction and self-contained of the stochastic integral in wich integrators are continuous square integrable martingales. This is one of the possible extensions to classical Itô's integral in which the integrator is a Brownian motion. In this context of stochastic integration we prove an Itô's formula version. Finally, we study a relationship between local time and Tanaka's formula. / Tesis
48

Implementación numérica de una ecuación diferencial de movimiento en un grado de libertad con componente estocástica

Torres Murga, Saul Moises 07 October 2020 (has links)
En dinámica, mediante la ecuación diferencial ordinaria de movimiento, es posible determinar la posición en el tiempo de una masa que se desplaza debido a que es perturbada por alguna acción determinística. En este trabajo se propuso aplicar a la masa una perturbación no determinística de origen sísmico en un grado de libertad vertical y dentro del rango lineal. La pregunta de investigación fue: ¿será´ posible migrar la ecuación diferencial ordinaria (EDO) de movimiento hacia una ecuación diferencial estocástica (EDE) de movimiento? Bajo ese marco, se estudiaron los fundamentos de la teoría de la probabilidad y los procesos estocásticos. Utilizando estas ramas de las matemáticas aplicadas se logró obtener una EDE de movimiento. Se estudió también la aproximación de Euler-Maruyama la cual se implementó, luego de verificar su estabilidad estocástica y numérica, para obtener una solución de la EDE de movimiento encontrada. Los resultados obtenidos permitieron confirmar que el uso de una versión no determinística genera resultados satisfactorios. Se recomienda efectuar análisis similares con otras variables, por ejemplo, en sistemas con un grado de libertad diferente, con más de un grado de libertad y/o considerando un comportamiento no lineal. / In dynamics, using the ordinary differential equation of motion, it is possible to determine the position in time of a moving mass because it is disturbed by some deterministic action. In this work it was proposed to apply to the mass a non-deterministic disturbance of seismic origin in a vertical degree of freedom and within the linear range. The research question was: Will it be possible to migrate the ordinary differential equation (ODE) of motion to a stochastic differential equation (SDE) of motion? Under this framework, the foundations of probability theory and stochastic processes were studied. Using these branches of applied mathematics, an SDE of movement was obtained. The Euler-Maruyama approximation was also studied, which was implemented, after verifying its stochastic and numerical stability, to obtain a solution of the EDE of the movement found. The results obtained confirmed that the use of a non-deterministic version generates satisfactory results. It is recommended to carry out similar analyzes with other variables, for instance, in systems with a different degree of freedom, with more than one degree of freedom and / or considering non-linear behavior. / Tesis
49

Aspectos geométricos de la envoltura convexa del movimiento browniano planar

Quesada Vargas, Juan Carlos 19 January 2021 (has links)
En el presente trabajo de tesis estudiaremos algunos aspectos geométricos de la envoltura convexa de una trayectoria del movimiento browniano planar en un determinado intervalo de tiempo. De manera más precisa, estudiaremos el perímetro, el área y el diámetro de dicha envoltura convexa. En el primer capítulo, revisaremos el movimiento browniano planar y algunas de sus propiedades tales como el principio de reflexión, la ley de la terna de Lévy y la ley del arcoseno que nos servirá como base teórica para justificar las cotas establecidas por James McRedmond y Chang Xu para estimar el diámetro promedio de dicha envoltura convexa. En el segundo capítulo se estudiarán las principales propiedades de cuerpos convexos y la envoltura convexa de una curva donde se desarrollará las propiedades que nos permitan justificar de manera más clara la fórmula de Cauchy para el perímetro y el área de un cuerpo convexo. En el tercer capítulo se utilizará como teorema principal la fórmula de Cauchy para justificar lo que se encontró de manera explícita tanto para el perímetro promedio y el área promedio de la envoltura convexa del recorrido de un movimiento browniano planar hasta el instante t = 1. Por último, en el cuarto capítulo se utilizará la terna de Lévy como teorema principal para el desarrollo de la estimación del diámetro promedio de dicha envoltura convexa. / In this thesis work we will study some geometric aspects of the convex envelope of a trajectory of planar Brownian motion in a certain time interval. More precisely, we will study the perimeter, area, and diameter of said convex envelope. In the rst chapter, we will review the planar Brownian motion and some of its properties such as the re ection principle, Lévy's triple law and the arcsine law that will serve as a theoretical basis to justify the bounds established by James McRedmond and Chang. Xu to estimate the expected diameter of said convex envelope. In the second chapter, the main properties of convex bodies and the convex envelope of a curve will be studied, where the properties that will allow us to justify more clearly Cauchy's formula for the perimeter and area of a convex body will be developed. In the third chapter, the Cauchy formula will be used as the main theorem to justify what was found explicitly for both the expected perimeter and the expected area of the convex envelope of the path of a planar Brownian motion up to the instant t = 1. By Finally, in the fourth chapter, the Lévy triple will be used as the main theorem for the development of the estimation of the diameter of said convex envelope. / Tesis
50

Análisis y Evaluación de Redes de Comunicación Estado Dependientes: Tráfico Pesado y Régimen Permanente en Forma Producto

Torres González, César Patricio January 2009 (has links)
No description available.

Page generated in 0.1233 seconds