• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 325
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 344
  • 344
  • 203
  • 160
  • 155
  • 93
  • 83
  • 77
  • 43
  • 40
  • 30
  • 30
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Uma técnica multimalhas para eliminação de ruídos e retoque digita\" / An-edge preserving multigrid-like for image denoising and inpainting

Carolina Toledo Ferraz 14 September 2006 (has links)
Técnicas baseadas na Equação de Fluxo Bem-Balanceada têm sido muitas vezes empregadas como eficientes ferramentas para eliminação de ruídos e preservação de arestas em imagens digitais. Embora efetivas, essas técnicas demandam alto custo computacional. Este trabalho objetiva propor uma técnica baseada na abordagem multigrid para acelerar a solução numérica da Equação de Fluxo Bem-Balanceada. A equação de difusão é resolvida em uma malha grossa e uma correção do erro na malha grossa para as mais finas é aplicada para gerar a solução desejada. A transferência entre malhas grossas e finas é feita pelo filtro de Mitchell, um esquema bem conhecido que é projetado para preservação de arestas. Além disso, a equação do transporte e a Equação do Fluxo de Curvatura são adaptadas à nossa técnica para retoque em imagens e eliminação de ruí?dos. Resultados numéricos são comparados quantitativamente e qualitativamente com outras abordagens, mostrando que o método aqui introduzido produz qualidade de imagens similares com muito menos tempo computacional. / Techniques based on the Well-Balanced Flow Equation have been employed as an efficient tool for edge preserving noise removal. Although effective, this technique demands high computational effort, rendering it not practical in several applications. This work aims at proposing a multigrid-like technique for speeding up the solution of the Well- Balanced Flow equation. In fact, the diffusion equation is solved in a coarse grid and a coarse-to-fine error correction is applied in order to generate the desired solution. The transfer between coarser and finer grids is made by the Mitchell-Filter, a well known interpolation scheme that is designed for preserving edges. Furthermore, the solution of the transport and the Mean Curvature Flow equations is adapted to the multigrid like technique for image inpainting and denoising. Numerical results are compared quantitative and qualitatively with other approaches, showing that our method produces similar image quality with much lower computational time.
332

[en] USE OF DEEP CONVOLUTIONAL NEURAL NETWORKS IN AUTOMATIC RECOGNITION AND CLASSIFICATION OF COAL MACERALS / [pt] USO DE REDES NEURAIS CONVOLUCIONAIS PROFUNDAS PARA RECONHECIMENTO E CLASSIFICAÇÃO AUTOMÁTICAS DE MACERAIS DE CARVÃO

RICHARD BRYAN MAGALHAES SANTOS 09 November 2022 (has links)
[pt] Diferentemente de muitas outras rochas, o carvão é uma rocha sedimentar composta principalmente de matéria orgânica derivada de detritos vegetais, acumulados em turfeiras em diferentes períodos geológicos. O carvão é um recurso econômico essencial em muitos países, tendo sido a principal força motriz por trás da revolução industrial. O carvão é amplamente utilizado industrialmente para diversos fins: carbonização e produção de coque, produção de ferro/aço, carvão térmico para gerar eletricidade, liquefação e gaseificação. A utilização do carvão é ditada pelas suas propriedades que são geralmente classificadas como sua composição, rank e grau. A composição do carvão, em termos dos seus macerais, e a sua classificação são determinadas manualmente por um petrógrafo, devido à sua natureza complexa. Este estudo almejou desenvolver um método automático baseado na aprendizagem de máquina para segmentação automática de macerais a nível de grupo e um módulo para determinação de rank por refletância em imagens petrográficas do carvão que pode melhorar a eficiência deste processo e diminuir a subjetividade do operador. foi desenvolvida uma abordagem de aprendizagem profunda da arquitetura baseada na Mask R-CNN para identificar e segmentar o grupo de maceral vitrinite, o qual é fundamental para a análise do rank, uma vez que a classificação é determinada pela reflectância da collotelinite (maceral desse grupo). Em segundo lugar, foi desenvolvido um método de processamento de imagem para analisar as imagens segmentadas de vitrinite e determinar a classificação do carvão, associando os valores cinzentos à reflectância. Para a segmentação de maceral, foram utilizadas cinco amostras para treinar a rede, 174 imagens foram utilizadas para treino, e 86 foram utilizadas para validação, com os melhores resultados obtidos para os modelos de vitrinite, inertinita, liptinita e colotelinita (89,23%, 68,81%, 37,00% e 84,77% F1-score, respectivamente). Essas amostras foram utilizadas juntamente com outras oito amostras para determinar os resultados de classificação utilizando a reflectância de collotelinite. As amostras variaram entre 0,97% e 1,8% de reflectância. Este método deverá ajudar a poupar tempo e mão-de-obra para análise, se implementado num modelo de produção. O desvio médio quadrático entre o método proposto e os valores de reflectância de referência foi de 0,0978. / [en] Unlike most other rocks, coal is a sedimentary rock composed primarily of organic matter derived from plant debris that accumulated in peat mires during different geological periods. Coal is also an essential economic resource in many countries, having been the main driving force behind the industrial revolution. Coal is still widely used industrially for many different purposes: carbonization and coke production, iron/steel making, thermal coal to generate electricity, liquefaction, and gasification. The utility of the coal is dictated by its properties which are commonly referred to as its rank, type, and grade. Coal composition, in terms of its macerals, and its rank determination are determined manually by a petrographer due to its complex nature. This study aimed to develop an automatic method based on machine learning capable of maceral segmentation at group level followed by a module for rank reflectance determination on petrographic images of coal that can improve the efficiency of this process and decrease operator subjectivity. Firstly, a Mask R-CNN-based architecture deep learning approach was developed to identify and segment the vitrinite maceral group, which is fundamental for rank analysis, as rank is determined by collotelinite reflectance (one of its individual macerals). Secondly, an image processing method was developed to analyze the vitrinite segmented images and determine coal rank by associating the grey values with the reflectance. For the maceral (group) segmentation, five samples were used to train the network, 174 images were used for training, and 86 were used for testing, with the best results obtained for the vitrinite, inertinite, liptinite, and collotelinite models (89.23%, 68.81%, 37.00% and 84.77% F1-score, respectively). Those samples were used alongside another eight samples to determine the rank results utilizing collotelinite reflectance. The samples ranged from 0.97% to 1.8% reflectance. This method should help save time and labor for analysis if implemented into a production model. The root mean square calculated between the proposed method and the reference reflectance values was 0.0978.
333

[pt] MODELAGEM DA REDE POROSA DE AGLOMERADOS DE MINÉRIO DE FERRO: DESENVOLVIMENTO DE UMA METODOLOGIA BASEADA EM MICROTOMOGRAFIA DE RAIOS-X / [en] PORE NETWORK MODELING OF IRON ORE AGGLOMERATES: DEVELOPMENT OF A METHODOLOGY BASED ON X-RAY MICROTOMOGRAPHY

IGOR NOGUEIRA LIMA 19 October 2023 (has links)
[pt] Uma das características mais relevantes nos aglomerados de minério de ferro é a sua porosidade, que impacta fortemente no desempenho desses materiais nos processos siderúrgicos. O desempenho é diretamente dependente da existência de uma rede porosa que permite o fluxo de gases pelo interior desses aglomerados sem comprometer sua integridade física. Neste trabalho, amostras de diferentes tipos de aglomerados de minério de ferro foram caracterizadas com o auxílio de técnicas de microtomografia computadorizada de raios X (microCT), processamento digital de imagens e modelagem de rede de poros (PNM). Com isso, a influência da microestrutura desses aglomerados na variação da sua porosidade e permeabilidade foi avaliada. O uso de microCT permitiu uma visualização 3D da estrutura dos aglomerados, permitindo realizar uma análise da estrutura interna das amostras para a discriminação do espaço poroso. O pixel size ideal foi estipulado por meio de diversas capturas com resoluções diferentes. A PNM foi utilizada para realizar a simulação da permeabilidade absoluta das amostras, correlacionando com a porosidade, conectividade dos poros e diâmetro de poros e conexões. Foi realizada uma variação de mais ou menos 5 tons de cinza nos limiares de segmentação para estipular a sensibilidade do impacto desse parâmetro nos resultados da modelagem. Os dois aglomerados apresentaram porosidade parecida, em torno de 20 por cento. Os resultados para piores resoluções apresentaram uma inconsistência, em muitos casos não possuindo sequer permeabilidade. As imagens adquiridas com um tamanho de voxel de 2 micrômetros resultaram em cálculos consistentes de permeabilidade, em torno de 0,4 a 2,4 mD para os briquetes e 0,03 a 1,6 mD para as pelotas, sugerindo que os briquetes são levemente mais permeáveis. A variação do limiar de segmentação dos poros teve forte impacto nos resultados das modelagens, influenciando diretamente no valor do cálculo da permeabilidade absoluta. / [en] One of the most relevant features of iron ore agglomerates is their porosity, which strongly impacts the performance of these materials in steelmaking processes. Performance is directly dependent on the existence of a porous network that allows gas flow through the interior of these agglomerates without compromising their physical integrity. This study characterized samples of different iron ore agglomerates using X-ray microcomputed tomography (microCT), digital image processing, and pore network modeling (PNM). The influence of the microstructure of these agglomerates on the variation of their porosity and permeability was evaluated. MicroCT enabled a 3D visualization of the agglomerate structure, allowing for an analysis of the internal structure of the samples to discriminate the porous space. The ideal pixel size was determined through various captures at different resolutions. PNM was used to simulate the absolute permeability of the samples, correlating it with porosity, pore connectivity, and pore and connection diameter. A variation of more or less 5 gray tones in the segmentation thresholds was performed to determine the sensitivity of this parameter s impact on the modeling results. The two agglomerates had similar porosity of around 20 percent. The results for lower resolutions showed inconsistency, with many cases lacking permeability altogether. Images acquired with a pixel size of 2 micrometers resulted in consistent permeability calculations, ranging from 0.4 to 2.4 mD for briquettes and 0.03 to 1.6 mD for pellets, indicating that briquettes are slightly more permeable. The variation of pore segmentation threshold had a strong impact on the modeling results, directly influencing the value of the absolute permeability calculation.
334

Identificação de possíveis áreas afetadas por sais no Perímetro Irrigado de São Gonçalo por meio do sensoriamento remoto. / Identification of possible areas affected by salts in the Irrigated Perimeter of São Gonçalo through remote sensing

OLIVEIRA, Woslley Sidney Nogueira de. 10 May 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-05-10T18:06:15Z No. of bitstreams: 1 WOSLLEY SIDNEY NOGUEIRA DE OLIVEIRA - DISSERTAÇÃO PPGSA ACADÊMICO 2018..pdf: 7059892 bytes, checksum: 1ab51771320e5bbd6c88d3c01b4b7aeb (MD5) / Made available in DSpace on 2018-05-10T18:06:15Z (GMT). No. of bitstreams: 1 WOSLLEY SIDNEY NOGUEIRA DE OLIVEIRA - DISSERTAÇÃO PPGSA ACADÊMICO 2018..pdf: 7059892 bytes, checksum: 1ab51771320e5bbd6c88d3c01b4b7aeb (MD5) Previous issue date: 2018-02-22 / Os perímetros irrigados implantados no Estado da Paraíba são considerados uma alternativa econômica bastante rentável, promove a geração de empregos e aumenta a disponibilidade de alimentos. Devido ao manejo inadequado do solo e da água, isso têm causado perdas na qualidade do solo desses perímetros, degradando-os principalmente por salinização. O sensoriamento remoto é uma alternativa tecnológica de baixo custo, boa frequência temporal e possui a capacidade de mapear áreas em processo de desertificação. Essa pesquisa têm por objetivo identificar possíveis áreas afetadas por sais no Perímetro Irrigado de São Gonçalo (PISG), Sousa- PB, por meio de técnicas de sensoriamento remoto. Para esse estudo foi utilizado imagens do satélite LANDSAT 8/OLI (média resolução espacial), órbita 216 / ponto 65 da data de 23/11/2016; imagem do software Google Earth Pro® da data de 29/02/2016 para servir como imagem auxiliar e registros fotográficos das áreas in loco. Realizou-se a técnica de classificação supervisionada, utilizando o SCP (semi- automatic plugin) no software QGIS (Quantum Gis). A aferição da qualidade da classificação se deu por meio da validação cruzada, utilizando de parâmetros estatísticos como a exatidão do produtor (EP), exatidão do usuário (EU), exatidão global (EG) e índice Kappa. A classe área supostamente salinizada (ASS) apresentou EP e EU de 89.15% e 88.88%, respectivamente. O índice Kappa resultou em um valor de 0.8684, a classe ASS foi classificada como sendo de qualidade excelente. A qualidade geral da classificação é avaliada tanto pela EG que apresentou um valor de 0.9350 como pelo índice Kappa geral com valor de 0.9252, sendo valores que representam uma classificação de qualidade excelente. A classe ASS apresentou os maiores valores mínimos e máximos de fator de refletância em todas as bandas da imagem, destacando a banda 6 de valores 0.47 e 0.67, respectivamente. O valor da área classificada como sendo da classe ASS foi de 1736.75 hectares, 31% da área total do PISG. As imagens analisadas possibilitaram discriminar áreas salinizadas e não salinizadas mediante as diferenças de tonalidade e de refletância. As imagens analisadas com o plugin SCP possibilitaram a realização de um mapa de classificação supervisionada, indicando a variabilidade espacial das áreas propícias ao processo de salinização. No entanto, recomenda- se a análise dos parâmetros físicos e químicos do solo dessas áreas para o aumento da confiabilidade na qualidade desse tipo de mapeamento. / The irrigated perimeters implemented in the State of Paraiba are considered a costeffective alternative quite profitable, promotes the generation of jobs and increases the availability of food. Due to inadequate management of soil and water, that have caused losses in soil quality of these perimeters, degrading them mainly by salinization. Remote sensing is an alternative low-cost technology, good temporal and frequency has the ability to map areas in process of desertification. This research aim to identify potential areas affected by salts in the irrigated perimeter of São Gonçalo (PISG), Sousa-PB, through remote sensing techniques. For this study we used LANDSAT satellite images 8/OLI (average spatial resolution), 216/orbit point 65 of 07/11/2016 date; image of the Google Earth Pro software® from date of 29/02/2016 to serve as auxiliary image and photographic records of the areas on the spot. The supervised classification technique, using the SCP (semi-automatic plugin) in software QGIS (Quantum Gis). The measurement of the quality of the classification took place by means of cross-validation, using statistical parameters such as the accuracy of the producer (EP), accuracy of the user (EU), global (EG) accuracy and Kappa index. The area class supposedly salinated (.ASS) presented EP and I of 89.15% and 88.88%, respectively. The Kappa index resulted in a value of .ASS class 0.8684 was classified as being of excellent quality. The overall quality of the classification is assessed both by EG who presented a 0.9350 value as the Kappa index 0.9252 valued General, being values that represent a rating of excellent quality. The class ASS presented the largest minimum and maximum values of reflectance factor in all the bands in the image, highlighting the band 6 0.47 values and 0.67, respectively. The value of the area classified as being of .ASS class was 1736.75 acres, 31% of the total area of the PISG. The images reviewed discriminate salinated areas and not allowed saline through the variations of shade and reflectance. The images analyzed with the SCP plugin enabled the creation of a map of supervised classification, indicating the spatial variability of the areas prone to salinization process. However, it is recommended that the analysis of the physical and chemical soil parameters of these areas for increased reliability in the quality of this type of mapping.
335

[en] FAST MOTION ADAPTIVE ESTIMATION ALGORITHM APPLIED TO THE H.261/AVC STANDARD CODER / [pt] ALGORITMO RÁPIDO DE ESTIMAÇÃO ADAPTATIVO AO MOVIMENTO APLICADO AO CODIFICADOR PADRÃO H.264/AVC

GUILHERME MACHADO GOEHRINGER 31 March 2008 (has links)
[pt] As técnicas de estimação de movimento utilizadas nos padrões de compressão de vídeo proporcionam a utilização mais eficiente dos recursos de transmissão e armazenamento, através da redução do número de bits necessários para representar um sinal de vídeo e da conservação da qualidade do conteúdo que está sendo processado. O objetivo dessa dissertação de Mestrado é propor um novo algoritmo capaz de reduzir a grande complexidade computacional envolvida nestas técnicas, mantendo a qualidade do sinal reconstruído. Dessa maneira, apresenta-se um algoritmo AUMHS (Adaptive Unsymmetrical-cross Multi-Hexagon-grid Search) o qual traz como principais modificações ao algoritmo UMHS (Unsymmetrical-cross Multi-Hexagon-grid Search) a implementação de uma medida de movimento que classifica as cenas de uma seqüência de vídeo de acordo com o movimento detectado para posterior adequação dos parâmetros de estimação de movimento e de outros parâmetros do codificador. Como resultado apresenta-se um ganho expressivo na velocidade de processamento, e conseqüente redução do custo computacional, conservando-se a qualidade obtida pelos principais algoritmos da literatura. O algoritmo foi implementado no codificador do padrão H.264/AVC onde realizou-se análises comparativas de desempenho com os algoritmos UMHS e FSA através da medição de parâmetros como PSNR (Peak Signal to Noise Ratio), tempo de processamento do codificador, tempo de processamento do módulo de estimação de movimento, taxa de bits utilizada e avaliação subjetiva informal. / [en] The motion estimation techniques used by the video compression standards provide an efficient utilization of the transmission and storage resources, through the reduction of the number of bits required to represent a video signal and the conservation of the content quality that is being processed. The objective of this work is to propose a new algorithm capable of reducing the great computational complexity involved in the motion estimation techniques, keeping the quality of the reconstructed signal. In this way, we present an algorithm called AUMHS (Adaptive Unsymmetrical-cross Multi-Hexagon-grid Search) which brings as main modifications relative to the UMHS (Unsymmetrical-cross Multi-Hexagon-grid Search) the implementation of a movement measure that can classify the scenes of a video sequence according to the motion detected for posterior adequacy of the motion estimation and others coder parameters. As result we present an expressive gain in the processing speed, and consequent computational cost reduction, conserving the same quality of the main algorithms published in the literature. The algorithm was implemented in the H.264/AVC coder in order to proceed with comparative analysis of perfomance together with the UMHS and FSA algorithms, measuring parameters as PSNR (Peak Signal you the Noise Ratio), coding processing time, motion estimation time, bit rate, and informal subjective evaluation.
336

Novos ataques de canal secundário a dispositivos de entrada manual de dados confidenciais. / New side-channel attacks on devices for manual input of sensitive data.

Faria, Gerson de Souza 09 December 2016 (has links)
Esta tese apresenta três novos ataques a equipamentos de pagamento eletrônico que possuem teclado mecânico, conhecidos como \"PIN pads\". Mostramos de três formas distintas como tais equipamentos possuem vulnerabilidades de segurança na camada física que permitem o vazamento do PIN (Personal Identification Number) quando o mesmo é digitado. Demonstramos experimentalmente que é possível inferir com elevada taxa de acerto (100% em um dos ataques) a senha digitada, de forma não-invasiva. Os ataques desenvolvidos são baseados na introdução de sensores nos próprios equipamentos ou em seu ambiente de operação: acelerômetros para análise de vibração, microfones para análise acústica e células de carga para medição de forças do pressionamento. Devido à massificação no uso de sensores por dispositivos de consumo, o roubo de informação por meios não convencionais é atividade crescente. Os resultados dos ataques de baixo custo realizados expõem sérias deficiências no processo de certificação de segurança de tais equipamentos. / This thesis presents three new attacks on electronic payment equipment having mechanical keypads, known as \"PIN pads\". We show in three different ways how they have security vulnerabilities at the physical layer allowing the leak of the PIN (Personal Identification Number) when it is entered. We experimentally demonstrated that it is possible to infer with high success rate (100% in one of the attacks) the password entered on the device, in a non-invasive way. The attacks are based on the placement of sensors inside the equipment itself or in its operating environment: accelerometers for doing vibration analysis, microphones for acoustic analysis and load cells for measuring the pressing force. Due to massive deployment of sensors in consumer devices, information theft by unconventional means is increasing. The results of the low-cost attacks here developed expose serious shortcomings in the process of security certification of such equipment.
337

Novos ataques de canal secundário a dispositivos de entrada manual de dados confidenciais. / New side-channel attacks on devices for manual input of sensitive data.

Gerson de Souza Faria 09 December 2016 (has links)
Esta tese apresenta três novos ataques a equipamentos de pagamento eletrônico que possuem teclado mecânico, conhecidos como \"PIN pads\". Mostramos de três formas distintas como tais equipamentos possuem vulnerabilidades de segurança na camada física que permitem o vazamento do PIN (Personal Identification Number) quando o mesmo é digitado. Demonstramos experimentalmente que é possível inferir com elevada taxa de acerto (100% em um dos ataques) a senha digitada, de forma não-invasiva. Os ataques desenvolvidos são baseados na introdução de sensores nos próprios equipamentos ou em seu ambiente de operação: acelerômetros para análise de vibração, microfones para análise acústica e células de carga para medição de forças do pressionamento. Devido à massificação no uso de sensores por dispositivos de consumo, o roubo de informação por meios não convencionais é atividade crescente. Os resultados dos ataques de baixo custo realizados expõem sérias deficiências no processo de certificação de segurança de tais equipamentos. / This thesis presents three new attacks on electronic payment equipment having mechanical keypads, known as \"PIN pads\". We show in three different ways how they have security vulnerabilities at the physical layer allowing the leak of the PIN (Personal Identification Number) when it is entered. We experimentally demonstrated that it is possible to infer with high success rate (100% in one of the attacks) the password entered on the device, in a non-invasive way. The attacks are based on the placement of sensors inside the equipment itself or in its operating environment: accelerometers for doing vibration analysis, microphones for acoustic analysis and load cells for measuring the pressing force. Due to massive deployment of sensors in consumer devices, information theft by unconventional means is increasing. The results of the low-cost attacks here developed expose serious shortcomings in the process of security certification of such equipment.
338

Métodos para aproximação poligonal e o desenvolvimento de extratores de características de forma a partir da função tangencial

Carvalho, Juliano Daloia de 12 September 2008 (has links)
Whereas manually drawn contours could contain artifacts related to hand tremor, automatically detected contours could contain noise and inaccuracies due to limitations or errors in the procedures for the detection and segmentation of the related regions. To improve the further step of description, modeling procedures are desired to eliminate the artifacts in a given contour, while preserving the important and significant details present in the contour. In this work, are presented a couple of polygonal modeling methods, first a method applied direct on the original contour and other derived from the turning angle function. Both methods use the following parametrization Smin e µmax to infer about removing or maintain a given segment. By the using of the mentioned parameters the proposed methods could be configured according to the application problem. Both methods have been shown eficient to reduce the influence of noise and artifacts while preserving relevant characteristic for further analysis. Systems to support the diagnosis by images (CAD) and retrieval of images by content (CBIR) use shape descriptor methods to make possible to infer about factors existing in a given contour or as base to classify groups with dierent patterns. Shape factors methods should represent a value that is aected by the shape of an object, thus it is possible to characterize the presence of a factor in the contour or identify similarity among contours. Shape factors should be invariant to rotation, translation or scale. In the present work there are proposed the following shape features: index of the presence of convex region (XRTAF ), index of the presence of concave regions (V RTAF ), index of convexity (CXTAF ), two measures of fractal dimension (DFTAF e DF1 TAF ) and the index of spiculation (ISTAF ). All derived from the smoothed turning angle function. The smoothed turning angle function represent the contour in terms of their concave and convex regions. The polygonal modeling and the shape descriptors methods were applied on the breast masses classification issue to evaluate their performance. The polygonal modeling procedure proposed in this work provided higher compression and better polygonal fitness. The best classification accuracies, on discriminating between benign masses and malignant tumors, obtain for XRTAF , V RTAF , CXTAF , DFTAF , DF1 TAF and ISTAF , in terms of area under the receiver operating characteristics curve, were 0:92, 0:92, 0:93, 0:93, 0:92 e 0:94, respectively. / Contornos obtidos manualmente podem conter ruídos e artefatos oriundos de tremores da mão bem como contornos obtidos automaticamente podem os conter dado a problemas na etapa de segmentação. Para melhorar os resultados da etapa de representação e descrição, são necessários métodos capazes de reduzir a influência dos ruídos e artefatos enquanto mantém características relevantes da forma. Métodos de aproximação poligonal têm como objetivo a remoção de ruídos e artefatos presentes nos contornos e a melhor representação da forma com o menor número possível de segmentos de retas. Nesta disserta ção são propostos dois métodos de aproximação poligonal, um aplicado diretamente no contorno e outro que é obtido a partir da função tangencial do contorno original. Ambos os métodos fazem uso dos parâmetros Smin e µmax para inferirem sobre a permanência ou remoção de um dado segmento. Com a utilização destes parâmetros os métodos podem ser configurados para serem utilizados em vários tipos de aplicações. Ambos os métodos mostram-se eficientes na remoção de ruídos e artefatos, enquanto que características relevantes para etapas de pós-processamento são mantidas. Sistemas de apoio ao diagnóstico por imagens e de recuperação de imagens por conte údo fazem uso de métodos descritores de forma para que seja possível inferir sobre características presentes em um dado contorno ou ainda como base para medir a dissimilaridade entre contornos. Métodos descritores de características são capazes de representar um contorno por um número, assim é possível estabelecer a presença de uma característica no contorno ou ainda identificar uma possível similaridade entre os contornos. Métodos para extração de características devem ser invariantes a rotação, translação e escala. Nesta dissertação são propostos os seguintes métodos descritores de características: índice de presença de regiões convexas (XRTAF ), índice da presença de regiões côncavas (V RTAF ), índice de convexidade (CXTAF ), duas medidas de dimensão fractal (DFTAF e DF1 TAF ) e o índice de espículos (ISTAF ). Todos aplicados sobre a função tangencial suavizada. A função tangencial suavizada representa o contorno em termos de suas regiões côncavas e regiões convexas. Os métodos de aproximação poligonal e descritores de características foram aplicados para o problema de classificação de lesões de mama. Os resultados obtidos, mostraram que os métodos de aproximação poligonal propostos neste trabalho resultam em polígonos mais compactos e com melhor representação do contorno original. Os melhores resultados de classificação, na discriminação entre lesões benignas e tumores malignos, obtidos por XRTAF , V RTAF , CXTAF , DFTAF , DF1 TAF e ISTAF , em termos da área sob a curva ROC, foram 0:92, 0:92, 0:93, 0:93, 0:92 e 0:94, respectivamente. / Mestre em Ciência da Computação
339

Estudo de técnicas para classificação de vozes afetadas por patologias. / Study of techniques to classify voices affected by pathologies.

MARINUS, João Vilian de Moraes Lima. 17 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-17T14:06:04Z No. of bitstreams: 1 JOÃO VIVLIAN DE MORAES LIMA MARINUS - DISSERTAÇÃO PPGCC 2010..pdf: 2343869 bytes, checksum: 46e0a7984b1b956fbea2bfcba9e1f631 (MD5) / Made available in DSpace on 2018-08-17T14:06:04Z (GMT). No. of bitstreams: 1 JOÃO VIVLIAN DE MORAES LIMA MARINUS - DISSERTAÇÃO PPGCC 2010..pdf: 2343869 bytes, checksum: 46e0a7984b1b956fbea2bfcba9e1f631 (MD5) Previous issue date: 2010-11-29 / Nos últimos anos, várias pesquisas na área de processamento digital de voz estão sendo feitas, no sentido de criar técnicas que auxiliem o diagnóstico preciso por um especialista de patologias do trato vocal de maneira não invasiva, fazendo com que o paciente se sinta confortável na hora do exame. Este trabalho trata da investigação de técnicas para a classificação de vozes afetadas por patologias da laringe, em especial edema de Reinke, visando a construção de um sistema de apoio ao especialista. O sistema de auxílio ao diagnóstico de patologias da laringe, proposto nesta dissertação, é constituido de 3 etapas principais: pré-processamento do sinal de voz, extração de características e classificação. A etapa de pré-processamento consiste na aquisição do sinal de voz, na aplicação de um filtro de pré ênfase para a minimização dos efeitos da radiação dos lábios e da variação da área da glote, seguido da segmentação e janelamento do sinal. Também foi investigada a não utilização da pré-ênfase nessa etapa. Na fase de extração de características, são utilizados coeficientes obtidos a partir da análise por predição linear (coeficientes LPC), coeficientes cepstrais, coeficientes delta-cepstrais e um vetor de características combinando coeficientes LPC e coeficientes cepstrais. A etapa de classificação é dividida em duas partes: classificação entre voz normal e voz afetada por patologia, sem especificar qual patologia, e caso o sinal seja classificado como voz afetada por patologia, tem-se uma segunda parte, a qual é realizada a classificação entre voz afetada por edema de Reinke e voz afetada por outra patologia. Para as duas partes, foram testados 3 diferentes classificadores: Redes Neurais Multilayer Perceptron - MLP, Modelos de Misturas de Gaussianas e Quantização Vetorial. Para diferenciar entre voz normal e voz afetada por patologia, os melhores resultados foram obtidos utilizando Redes Neurais. Para diferenciar entre voz afetada por edema e voz afetada por outra patologia, os melhores resultados foram obtidos utilizando Quantização Vetorial. Em ambos os casos, os melhores resultados foram obtidos ao se utilizar coeficientes cepstrais e sem utilização da pré-ênfase. / In recent years, several studies in digital voice processing are being made in order to create techniques to support a noninvasive accurate diagnosis of vocal tract diseases by aspecialist, making the patient feel comfortable during examination. This work deals with the investigation of techniques for classification of voices affected by laryngeal pathologies, especially Reinke’s edema, aiming to build a support system to the specialist. The system for the diagnosis of laryngeal pathologies, proposed here, consists of three main steps: preprocessing the speech signal, feature extraction and classification. Preprocessing corresponds the acquisition of voice signal, the application of a pre-emphasis filter for minimizing the radiation effects from the lips and from variation in glottal area, and the signal segmentation and windowing. The non-use of pre-emphasis was also investigated at this point. In the feature extraction step, we use coefficients obtained from the linear prediction analysis (LPC coefficients), cepstral coefficients, delta-cepstral coefficients, and afeature vectorc ombining LPC and cepstral coefficients. The classification is divided into two parts: classification of normal voice versus voice affected by pathology, without specifying which pathology, and if the signal is classified as voice affected by pathology, second part happens, which is performed by the classification between voice affected by Reinke’s edema and voice affected by other pathology. For both parties, 3 different classifiers were tested: Neural Networks Multilayer Perceptron - MLP, Gaussian Mixture Models and Vector Quantization. To differentiate between normal voice and voice affected by pathology, the best results were obtained using Neural Networks. To differentiate between voice affected by edema and voice affected by pathology, the best results were obtained using vector quantization. In both cases, the best results were obtained when usingcepstral coefficients and withoutuse of pre-emphasis.
340

An?lise e classifica??o de imagens de les?es da pele por atributos de cor, forma e textura utilizando m?quina de vetor de suporte

Soares, Heliana Bezerra 22 February 2008 (has links)
Made available in DSpace on 2014-12-17T14:54:49Z (GMT). No. of bitstreams: 1 HelianaBS_da_capa_ate_cap4.pdf: 2361373 bytes, checksum: 3e1e43e8ba1aadc274663b8b8e3de72f (MD5) Previous issue date: 2008-02-22 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries / O c?ncer de pele ? o mais comum de todos os c?nceres e o aumento da sua incid?ncia deve-se, em parte, ao comportamento das pessoas em rela??o ? exposi??o ao sol. No Brasil, o c?ncer de pele n?o melanoma ? o mais incidente na maioria das regi?es. A dermatoscopia e ideodermatoscopia s?o os principais tipos de exames para o diagn?stico de doen?as da pele dermatol?gicas. O campo que envolve o uso de ferramentas computacionais para o aux?lio ou acompanhamento do diagn?stico m?dico em les?es dermatol?gicas ainda ? visto como muito recente. V?rios m?todos foram propostos para classifica??o autom?tica de patologias da pele utilizando imagens. O presente trabalho tem como objetivo apresentar uma nova metodologia inteligente para an?lise e classifica??o de imagens de c?ncer de pele, baseada nas t?cnicas de processamento digital de imagens para extra??o de caracter?sticas de cor, forma e textura, utilizando a Transformada Wavelet Packet (TWP) e a t?cnicas de aprendizado de m?quina denominada M?quina de Vetor de Suporte (SVM Support Vector Machine). A Transformada Wavelet Packet ? aplicada para extra??o de caracter?sticas de textura nas imagens. Esta consiste de um conjunto de fun??es base que representa a imagem em diferentes bandas de freq??ncia, cada uma com resolu??es distintas correspondente a cada escala. Al?m disso, s?o calculadas tamb?m as caracter?sticas de cor da les?o que s?o dependentes de um contexto visual, influenciada pelas cores existentes em sua volta, e os atributos de forma atrav?s dos descritores de Fourier. Para a tarefa de classifica??o ? utilizado a M?quina de Vetor de Suporte, que baseia-se nos princ?pios da minimiza??o do risco estrutural, proveniente da teoria do aprendizado estat?stico. A SVM tem como objetivo construir hiperplanos ?timos que apresentem a maior margem de separa??o entre classes. O hiperplano gerado ? determinado por um subconjunto dos pontos das classes, chamado vetores de suporte. Para o banco de dados utilizado neste trabalho, os resultados apresentaram um bom desempenho obtendo um acerto global de 92,73% para melanoma, e 86% para les?es n?o-melanoma e benigna. O potencial dos descritores extra?dos aliados ao classificador SVM tornou o m?todo capaz de reconhecer e classificar as les?es analisadas

Page generated in 0.0671 seconds