• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution / Modelagem de degradação para análise de confiabilidade com estrutura dependente do tempo baseada na distribuição gaussiana inversa

Morita, Lia Hanna Martins 07 April 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-08-29T19:13:47Z No. of bitstreams: 1 TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-25T18:22:48Z (GMT) No. of bitstreams: 1 TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-25T18:22:55Z (GMT) No. of bitstreams: 1 TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Made available in DSpace on 2017-09-25T18:27:54Z (GMT). No. of bitstreams: 1 TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) Previous issue date: 2017-04-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Conventional reliability analysis techniques are focused on the occurrence of failures over time. However, in certain situations where the occurrence of failures is tiny or almost null, the estimation of the quantities that describe the failure process is compromised. In this context the degradation models were developed, which have as experimental data not the failure, but some quality characteristic attached to it. Degradation analysis can provide information about the components lifetime distribution without actually observing failures. In this thesis we proposed different methodologies for degradation data based on the inverse Gaussian distribution. Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian process model with frailty as a feasible tool to explore the influence of unobserved covariates, and a comparative study with the traditional inverse Gaussian process based on simulated data was made. We also presented a mixture inverse Gaussian process model in burn-in tests, whose main interest is to determine the burn-in time and the optimal cutoff point that screen out the weak units from the normal ones in a production row, and a misspecification study was carried out with the Wiener and gamma processes. Finally, we considered a more flexible model with a set of cutoff points, wherein the misclassification probabilities are obtained by the exact method with the bivariate inverse Gaussian distribution or an approximate method based on copula theory. The application of the methodology was based on three real datasets in the literature: the degradation of LASER components, locomotive wheels and cracks in metals. / As técnicas convencionais de análise de confiabilidade são voltadas para a ocorrência de falhas ao longo do tempo. Contudo, em determinadas situações nas quais a ocorrência de falhas é pequena ou quase nula, a estimação das quantidades que descrevem os tempos de falha fica comprometida. Neste contexto foram desenvolvidos os modelos de degradação, que possuem como dado experimental não a falha, mas sim alguma característica mensurável a ela atrelada. A análise de degradação pode fornecer informações sobre a distribuição de vida dos componentes sem realmente observar falhas. Assim, nesta tese nós propusemos diferentes metodologias para dados de degradação baseados na distribuição gaussiana inversa. Inicialmente, nós introduzimos o modelo de taxa de deterioração gaussiana inversa para dados de degradação e um estudo de suas propriedades assintóticas com dados simulados. Em seguida, nós apresentamos um modelo de processo gaussiano inverso com fragilidade considerando que a fragilidade é uma boa ferramenta para explorar a influência de covariáveis não observadas, e um estudo comparativo com o processo gaussiano inverso usual baseado em dados simulados foi realizado. Também mostramos um modelo de mistura de processos gaussianos inversos em testes de burn-in, onde o principal interesse é determinar o tempo de burn-in e o ponto de corte ótimo para separar os itens bons dos itens ruins em uma linha de produção, e foi realizado um estudo de má especificação com os processos de Wiener e gamma. Por fim, nós consideramos um modelo mais flexível com um conjunto de pontos de corte, em que as probabilidades de má classificação são estimadas através do método exato com distribuição gaussiana inversa bivariada ou em um método aproximado baseado na teoria de cópulas. A aplicação da metodologia foi realizada com três conjuntos de dados reais de degradação de componentes de LASER, rodas de locomotivas e trincas em metais.
2

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos

Hartmann, Marcelo 09 March 2015 (has links)
Made available in DSpace on 2016-06-02T20:06:51Z (GMT). No. of bitstreams: 1 6609.pdf: 3049383 bytes, checksum: 33c7f1618f776ca50cf4694aaba80ea5 (MD5) Previous issue date: 2015-03-09 / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter _ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets. / Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação _ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados.
3

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Hartmann, Marcelo 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
4

Road features detection and sparse map-based vehicle localization in urban environments / Detecção de características de rua e localização de veículos em ambientes urbanos baseada em mapas esparsos

Hata, Alberto Yukinobu 13 December 2016 (has links)
Localization is one of the fundamental components of autonomous vehicles by enabling tasks as overtaking, lane keeping and self-navigation. Urban canyons and bad weather interfere with the reception of GPS satellite signal which prohibits the exclusive use of such technology for vehicle localization in urban places. Alternatively, map-aided localization methods have been employed to enable position estimation without the dependence on GPS devices. In this solution, the vehicle position is given as the place that best matches the sensor measurement to the environment map. Before building the maps, feature sof the environment must be extracted from sensor measurements. In vehicle localization, curbs and road markings have been extensively employed as mapping features. However, most of the urban mapping methods rely on a street free of obstacles or require repetitive measurements of the same place to avoid occlusions. The construction of an accurate representation of the environment is necessary for a proper match of sensor measurements to the map during localization. To prevent the necessity of a manual process to remove occluding obstacles and unobserved areas, a vehicle localization method that supports maps built from partial observations of the environment is proposed. In this localization system,maps are formed by curb and road markings extracted from multilayer laser sensor measurements. Curb structures are detected even in the presence of vehicles that occlude the roadsides, thanks to the use of robust regression. Road markings detector employs Otsu thresholding to analyze infrared remittance data which makes the method insensitive to illumination. Detected road features are stored in two map representations: occupancy grid map (OGM) and Gaussian process occupancy map (GPOM). The first approach is a popular map structure that represents the environment through fine-grained grids. The second approach is a continuous representation that can estimate the occupancy of unseen areas. The Monte Carlo localization (MCL) method was adapted to support the obtained maps of the urban environment. In this sense, vehicle localization was tested in an MCL that supports OGM and an MCL that supports GPOM. Precisely, for MCL based on GPOM, a new measurement likelihood based on multivariate normal probability density function is formulated. Experiments were performed in real urban environments. Maps were built using sparse laser data to verify there ronstruction of non-observed areas. The localization system was evaluated by comparing the results with a high precision GPS device. Results were also compared with localization based on OGM. / No contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
5

A gestão da estratégia mercadologica sob uma nova perspectiva: existe relação entre a física e a administração?

Mendes, Armando Praça January 2004 (has links)
Made available in DSpace on 2009-11-18T19:01:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2004 / A Física e a Administração concentram suas pesquisas sobre fenômenos que, de certa forma, se assemelham, fazendo com que nos questionemos a respeito da grande integral do universo a que estamos submetidos. Em uma exploração por analogias, aproxima-se aqui o mundo organizacional ao dos sistemas UnIVerSaIS, instáveis e não-integráveis, onde a flecha do tempo é quem determina a evolução dos mesmos. Mostra-se que na Administração, como na Física, tudo parece convergir na direção de um inesgotável repertório de bifurcações e possibilidades para o destino mercadológico de produtos, serviços e marcas ao longo de um continuum. Para amenizar os efeitos dessas incertezas, é buscada uma simplificação desses complexos sistemas sociais através de uma proposta de modelo baseado em fatores consagrados pela literatura da gestão empresarial como norteadores das escolhas dos consumidores; um processo gaussiano da 'percepção do valor', que pode servir de ferramenta nas decisões estratégicas e gerenciais dentro das empresas. / The physical and the administration sciences focus their researches on phenomenum wich, in some ways, can have similarities, making us to question and ask about the great convergence ofthe systems in the Universe under which we are submitted. Exploring by analogues, this research tries to make sense to put together the organizational and physical systems, unstables and not integratable, moving forward by the time's arrow, that determines the evolution ofthose. In the Administration, as in the Physics, everything seems to converge at the direction of an inexhaustible collection of forks and possibilities, if considering the destiny of products, services and labels during the human history. To soften the effects of those uncertanties, it is fetched a simplification of these complex social systems across a proposal of a model to be constructed and tested, based in some factors established by business management's literature as the guiders of the consumers's choices; a gaussian process of the 'insight value', that can be useful as a tool for the strategic and business managing decisions beyond the companies.
6

Road features detection and sparse map-based vehicle localization in urban environments / Detecção de características de rua e localização de veículos em ambientes urbanos baseada em mapas esparsos

Alberto Yukinobu Hata 13 December 2016 (has links)
Localization is one of the fundamental components of autonomous vehicles by enabling tasks as overtaking, lane keeping and self-navigation. Urban canyons and bad weather interfere with the reception of GPS satellite signal which prohibits the exclusive use of such technology for vehicle localization in urban places. Alternatively, map-aided localization methods have been employed to enable position estimation without the dependence on GPS devices. In this solution, the vehicle position is given as the place that best matches the sensor measurement to the environment map. Before building the maps, feature sof the environment must be extracted from sensor measurements. In vehicle localization, curbs and road markings have been extensively employed as mapping features. However, most of the urban mapping methods rely on a street free of obstacles or require repetitive measurements of the same place to avoid occlusions. The construction of an accurate representation of the environment is necessary for a proper match of sensor measurements to the map during localization. To prevent the necessity of a manual process to remove occluding obstacles and unobserved areas, a vehicle localization method that supports maps built from partial observations of the environment is proposed. In this localization system,maps are formed by curb and road markings extracted from multilayer laser sensor measurements. Curb structures are detected even in the presence of vehicles that occlude the roadsides, thanks to the use of robust regression. Road markings detector employs Otsu thresholding to analyze infrared remittance data which makes the method insensitive to illumination. Detected road features are stored in two map representations: occupancy grid map (OGM) and Gaussian process occupancy map (GPOM). The first approach is a popular map structure that represents the environment through fine-grained grids. The second approach is a continuous representation that can estimate the occupancy of unseen areas. The Monte Carlo localization (MCL) method was adapted to support the obtained maps of the urban environment. In this sense, vehicle localization was tested in an MCL that supports OGM and an MCL that supports GPOM. Precisely, for MCL based on GPOM, a new measurement likelihood based on multivariate normal probability density function is formulated. Experiments were performed in real urban environments. Maps were built using sparse laser data to verify there ronstruction of non-observed areas. The localization system was evaluated by comparing the results with a high precision GPS device. Results were also compared with localization based on OGM. / No contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
7

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme values

Marcelo Hartmann 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.

Page generated in 0.0416 seconds