• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 8
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 100
  • 100
  • 42
  • 31
  • 22
  • 21
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Analysis and Enforcement of Properties in Software Systems

Wu, Meng 02 July 2019 (has links)
Due to the lack of effective techniques for detecting and mitigating property violations, existing approaches to ensure the safety and security of software systems are often labor intensive and error prone. Furthermore, they focus primarily on functional correctness of the software code while ignoring micro-architectural details of the underlying processor, such as cache and speculative execution, which may undermine their soundness guarantees. To fill the gap, I propose a set of new methods and tools for ensuring the safety and security of software systems. Broadly speaking, these methods and tools fall into three categories. The first category is concerned with static program analysis. Specifically, I develop a novel abstract interpretation framework that considers both speculative execution and a cache model, and guarantees to be sound for estimating the execution time of a program and detecting side-channel information leaks. The second category is concerned with static program transformation. The goal is to eliminate side channels by equalizing the number of CPU cycles and the number of cache misses along all program paths for all sensitive variables. The third category is concerned with runtime safety enforcement. Given a property that may be violated by a reactive system, the goal is to synthesize an enforcer, called the shield, to correct the erroneous behaviors of the system instantaneously, so that the property is always satisfied by the combined system. I develop techniques to make the shield practical by handling both burst error and real-valued signals. The proposed techniques have been implemented and evaluated on realistic applications to demonstrate their effectiveness and efficiency. / Doctor of Philosophy / It is important for everything around us to follow some rules to work correctly. That is the same for our software systems to follow the security and safety properties. Especially, softwares may leak information via unexpected ways, e.g. the program timing, which makes it more difficult to be detected or mitigated. For instance, if the execution time of a program is related to the sensitive value, the attacker may obtain information about the sensitive value. On the other side, due to the complexity of software, it is nearly impossible to fully test or verify them. However, the correctness of software systems at runtime is crucial for critical applications. While existing approaches to find or resolve properties violation problem are often labor intensive and error prone, in this dissertation, I first propose an automated tool for detecting and mitigating the security vulnerability through program timing. Programs processed by the tool are guaranteed to be time constant under any sensitive values. I have also taken the influence of speculative execution, which is the cause behind recent Spectre and Meltdown attack, into consideration for the first time. To enforce the correctness of programs at runtime, I introduce an extra component that can be attached to the original system to correct any violation if it happens, thus the entire system will still be correct. All proposed methods have been evaluated on a variety of real world applications. The results show that these methods are effective and efficient in practice.
52

An Exploratory Study of the Remixing Practices in the Scratch Programming Community: Trends, Causalities, and Influences

Khawas, Prapti Prakash 11 June 2019 (has links)
One of the greatest achievements of Scratch as an educational tool is the eager willingness of programmers to use existing projects as the starting point for their own projects, a practice known as remixing. Despite the importance of remixing as a foundation of collaborative and communal learning, the practice remains poorly understood. Without a clear picture of how and why Scratch programmers remix a project as a starting point of their own projects, this programming community would remain in the dark about which programming practices encourage and facilitate remixing. The designers of programming environments for blocks lack feedback on how the remixing facility is used in the wild. To gain a deeper insight into remixing, this thesis presents the results of a comprehensive study of this practice in Scratch that investigates the following heretofore unexplored dimensions of remixing: (1) the prevailing modifications that remixes perform on existing projects, (2) the impact of the original project's code quality on the granularity, extent, and development time of the modifications in the remixes, and (3) the propensity of the dominant programming practices in the original project to remain so in the remixes. Our findings can be used to promote those programming practices in the Scratch community that encourage remixing while also improving this practice's effectiveness, thus benefiting the educational and end-user programming communities. / Master of Science / The Scratch programming language has become an intrinsically important tool in introductory CS education. A visual, block-based language, Scratch is web-based, featuring an enormous online programming community, through which projects are eagerly shared. One of the unique learning provisions of Scratch is the ability to easily start a project by modifying someone else’s project, a practice referred to as remixing. Despite the central role that remixing plays in enabling the communal and collaborative learning styles in the Scratch community, the practice of remixing remains inadequately understood. This knowledge gap leaves the Scratch community in the dark about which programming practices encourage and facilitate remixing, as well as deprives Scratch environment designers from actionable feedback on how the remixing facility is used in the wild. To address this problem, this thesis reports on the results of an exploratory study of remixing in Scratch that investigates three heretofore unexplored dimensions of this practice. First, we study the general remixing trends in terms of how remixes modify the original projects. Second, we infer the impact of a project’s code quality on the modifications in its remixes and the development time. Finally, we investigate whether programmers adopt the techniques and practices of the remixed projects. Computing educators can apply our findings to enhance the educational effectiveness of Scratch by encouraging the practice and magnitude of remixing.
53

From Theory to Practice: Deployment-grade Tools and Methodologies for Software Security

Rahaman, Sazzadur 25 August 2020 (has links)
Following proper guidelines and recommendations are crucial in software security, which is mostly obstructed by accidental human errors. Automatic screening tools have great potentials to reduce the gap between the theory and the practice. However, the goal of scalable automated code screening is largely hindered by the practical difficulty of reducing false positives without compromising analysis quality. To enable compile-time security checking of cryptographic vulnerabilities, I developed highly precise static analysis tools (CryptoGuard and TaintCrypt) that developers can use routinely. The main technical enabler for CryptoGuard is a set of detection algorithms that refine program slices by leveraging language-specific insights, where TaintCrypt relies on symbolic execution-based path-sensitive analysis to reduce false positives. Both CryptoGuard and TaintCrypt uncovered numerous vulnerabilities in real-world software, which proves the effectiveness. Oracle has implemented our cryptographic code screening algorithms for Java in its internal code analysis platform, Parfait, and detected numerous vulnerabilities that were previously unknown. I also designed a specification language named SpanL to easily express rules for automated code screening. SpanL enables domain experts to create domain-specific security checking. Unfortunately, tools and guidelines are not sufficient to ensure baseline security in internet-wide ecosystems. I found that the lack of proper compliance checking induced a huge gap in the payment card industry (PCI) ecosystem. I showed that none of the PCI scanners (out of 6), we tested are fully compliant with the guidelines, issuing certificates to merchants that still have major vulnerabilities. Consequently, 86% (out of 1,203) of the e-commerce websites we tested, are non-compliant. To improve the testbeds in the light of our work, the PCI Security Council shared a copy of our PCI measurement paper to the dedicated companies that host, manage, and maintain the PCI certification testbeds. / Doctor of Philosophy / Automatic screening tools have great potentials to reduce the gap between the theory and the practice of software security. However, the goal of scalable automated code screening is largely hindered by the practical difficulty of reducing false positives without compromising analysis quality. To enable compile-time security checking of cryptographic vulnerabilities, I developed highly precise static analysis tools (CryptoGuard and TaintCrypt) that developers can use routinely. Both CryptoGuard and TaintCrypt uncovered numerous vulnerabilities in real-world software, which proves the effectiveness. Oracle has implemented our cryptographic code screening algorithms for Java in its internal code analysis platform, Parfait, and detected numerous vulnerabilities that were previously unknown. I also designed a specification language named SpanL to easily express rules for automated code screening. SpanL enables domain experts to create domain-specific security checking. Unfortunately, tools and guidelines are not sufficient to ensure baseline security in internet-wide ecosystems. I found that the lack of proper compliance checking induced a huge gap in the payment card industry (PCI) ecosystem. I showed that none of the PCI scanners (out of 6), we tested are fully compliant with the guidelines, issuing certificates to merchants that still have major vulnerabilities. Consequently, 86% (out of 1,203) of the e-commerce websites we tested, are non-compliant. To improve the testbeds in the light of our work, the PCI Security Council shared a copy of our PCI measurement paper to the dedicated companies that host the PCI certification testbeds.
54

Collecting and representing parallel programs with high performance instrumentation

Railing, Brian Paul 07 January 2016 (has links)
Computer architecture has looming challenges with finding program parallelism, process technology limits, and limited power budget. To navigate these challenges, a deeper understanding of parallel programs is required. I will discuss the task graph representation and how it enables programmers and compiler optimizations to understand and exploit dynamic aspects of the program. I will present Contech, which is a high performance framework for generating dynamic task graphs from arbitrary parallel programs. The Contech framework supports a variety of languages and parallelization libraries, and has been tested on both x86 and ARM. I will demonstrate how this framework encompasses a diversity of program analyses, particularly by modeling a dynamically reconfigurable, heterogeneous multi-core processor.
55

Postavení atletiky ve školním vzdělávacím programu na 1.stupni základní školy / Position of Athletics in the School Curricula in the First Five Years of Primary School

Šašková, Veronika January 2014 (has links)
On the basis of the analysis of school educational programmes and as well based on the statements I gained from the teachers I'm trying to find out and verify the representation of athletics in first five years of primary schools. Title of diploma thesis: The position of athletics in the school curricula in the first five years of primary school Student: Veronika Šašková Supervisor: Mgr. Zdeňka Engelthalerová Objective of the work: Determine the position of athletics in first five years of primary school Key words: athletics, school age, framework educational program, the primary school curriculum, school educational program
56

Dynamic program analysis algorithms to assist parallelization

Kim, Minjang 24 August 2012 (has links)
All market-leading processor vendors have started to pursue multicore processors as an alternative to high-frequency single-core processors for better energy and power efficiency. This transition to multicore processors no longer provides the free performance gain enabled by increased clock frequency for programmers. Parallelization of existing serial programs has become the most powerful approach to improving application performance. Not surprisingly, parallel programming is still extremely difficult for many programmers mainly because thinking in parallel is simply beyond the human perception. However, we believe that software tools based on advanced analyses can significantly reduce this parallelization burden. Much active research and many tools exist for already parallelized programs such as finding concurrency bugs. Instead we focus on program analysis algorithms that assist the actual parallelization steps: (1) finding parallelization candidates, (2) understanding the parallelizability and profits of the candidates, and (3) writing parallel code. A few commercial tools are introduced for these steps. A number of researchers have proposed various methodologies and techniques to assist parallelization. However, many weaknesses and limitations still exist. In order to assist the parallelization steps more effectively and efficiently, this dissertation proposes Prospector, which consists of several new and enhanced program analysis algorithms. First, an efficient loop profiling algorithm is implemented. Frequently executed loop can be candidates for profitable parallelization targets. The detailed execution profiling for loops provides a guide for selecting initial parallelization targets. Second, an efficient and rich data-dependence profiling algorithm is presented. Data dependence is the most essential factor that determines parallelizability. Prospector exploits dynamic data-dependence profiling, which is an alternative and complementary approach to traditional static-only analyses. However, even state-of-the-art dynamic dependence analysis algorithms can only successfully profile a program with a small memory footprint. Prospector introduces an efficient data-dependence profiling algorithm to support large programs and inputs as well as provides highly detailed profiling information. Third, a new speedup prediction algorithm is proposed. Although the loop profiling can give a qualitative estimate of the expected profit, obtaining accurate speedup estimates needs more sophisticated analysis. Prospector introduces a new dynamic emulation method to predict parallel speedups from annotated serial code. Prospector also provides a memory performance model to predict speedup saturation due to increased memory traffic. Compared to the latest related work, Prospector significantly improves both prediction accuracy and coverage. Finally, Prospector provides algorithms that extract hidden parallelism and advice on writing parallel code. We present a number of case studies how Prospector assists manual parallelization in particular cases including privatization, reduction, mutex, and pipelining.
57

Statistical causal analysis for fault localization

Baah, George Kofi 08 August 2012 (has links)
The ubiquitous nature of software demands that software is released without faults. However, software developers inadvertently introduce faults into software during development. To remove the faults in software, one of the tasks developers perform is debugging. However, debugging is a difficult, tedious, and time-consuming process. Several semi-automated techniques have been developed to reduce the burden on the developer during debugging. These techniques consist of experimental, statistical, and program-structure based techniques. Most of the debugging techniques address the part of the debugging process that relates to finding the location of the fault, which is referred to as fault localization. The current fault-localization techniques have several limitations. Some of the limitations of the techniques include (1) problems with program semantics, (2) the requirement for automated oracles, which in practice are difficult if not impossible to develop, and (3) the lack of theoretical basis for addressing the fault-localization problem. The thesis of this dissertation is that statistical causal analysis combined with program analysis is a feasible and effective approach to finding the causes of software failures. The overall goal of this research is to significantly extend the state of the art in fault localization. To extend the state-of-the-art, a novel probabilistic model that combines program-analysis information with statistical information in a principled manner is developed. The model known as the probabilistic program dependence graph (PPDG) is applied to the fault-localization problem. The insights gained from applying the PPDG to fault localization fuels the development of a novel theoretical framework for fault localization based on established causal inference methodology. The development of the framework enables current statistical fault-localization metrics to be analyzed from a causal perspective. The analysis of the metrics show that the metrics are related to each other thereby allowing the unification of the metrics. Also, the analysis of metrics from a causal perspective reveal that the current statistical techniques do not find the causes of program failures instead the techniques find the program elements most associated with failures. However, the fault-localization problem is a causal problem and statistical association does not imply causation. Several empirical studies are conducted on several software subjects and the results (1) confirm our analytical results, (2) demonstrate the efficacy of our causal technique for fault localization. The results demonstrate the research in this dissertation significantly improves on the state-of-the-art in fault localization.
58

Program analysis to support quality assurance techniques for web applications

Halfond, William G. J. 20 January 2010 (has links)
As web applications occupy an increasingly important role in the day-to-day lives of millions of people, testing and analysis techniques that ensure that these applications function with a high level of quality are becoming even more essential. However, many software quality assurance techniques are not directly applicable to modern web applications. Certain characteristics, such as the use of HTTP and generated object programs, can make it difficult to identify software abstractions used by traditional quality assurance techniques. More generally, many of these abstractions are implemented differently in web applications, and the lack of techniques to identify them complicates the application of existing quality assurance techniques to web applications. This dissertation describes the development of program analysis techniques for modern web applications and shows that these techniques can be used to improve quality assurance. The first part of the research focuses on the development of a suite of program analysis techniques that identifies useful abstractions in web applications. The second part of the research evaluates whether these program analysis techniques can be used to successfully adapt traditional quality assurance techniques to web applications, improve existing web application quality assurance techniques, and develop new techniques focused on web application-specific issues. The work in quality assurance techniques focuses on improving three different areas: generating test inputs, verifying interface invocations, and detecting vulnerabilities. The evaluations of the resulting techniques show that the use of the program analyses results in significant improvements in existing quality assurance techniques and facilitates the development of new useful techniques.
59

Techniques to facilitate symbolic execution of real-world programs

Anand, Saswat 11 May 2012 (has links)
The overall goal of this research is to reduce the cost of software development and improve the quality of software. Symbolic execution is a program-analysis technique that is used to address several problems that arise in developing high-quality software. Despite the fact that the symbolic execution technique is well understood, and performing symbolic execution on simple programs is straightforward, it is still not possible to apply the technique to the general class of large, real-world software. A symbolic-execution system can be effectively applied to large, real-world software if it has at least the two features: efficiency and automation. However, efficient and automatic symbolic execution of real-world programs is a lofty goal because of both theoretical and practical reasons. Theoretically, achieving this goal requires solving an intractable problem (i.e., solving constraints). Practically, achieving this goal requires overwhelming effort to implement a symbolic-execution system that can precisely and automatically symbolically execute real-world programs. This research makes three major contributions. 1. Three new techniques that address three important problems of symbolic execution. Compared to existing techniques, the new techniques * reduce the manual effort that may be required to symbolically execute those programs that either generate complex constraints or parts of which cannot be symbolically executed due to limitations of a symbolic-execution system. * improve the usefulness of symbolic execution (e.g., expose more bugs in a program) by enabling discovery of more feasible paths within a given time budget. 2. A novel approach that uses symbolic execution to generate test inputs for Apps that run on modern mobile devices such as smartphones and tablets. 3. Implementations of the above techniques and empirical results obtained from applying those techniques to real-world programs that demonstrate their effectiveness.
60

Abstract interpretation of domain-specific embedded languages

Backhouse, Kevin Stuart January 2002 (has links)
A domain-specific embedded language (DSEL) is a domain-specific programming language with no concrete syntax of its own. Defined as a set of combinators encapsulated in a module, it borrows the syntax and tools (such as type-checkers and compilers) of its host language; hence it is economical to design, introduce, and maintain. Unfortunately, this economy is counterbalanced by a lack of room for growth. DSELs cannot match sophisticated domain-specific languages that offer tools for domainspecific error-checking and optimisation. These tools are usually based on syntactic analyses, so they do not work on DSELs. Abstract interpretation is a technique ideally suited to the analysis of DSELs, due to its semantic, rather than syntactic, approach. It is based upon the observation that analysing a program is equivalent to evaluating it over an abstract semantic domain. The mathematical properties of the abstract domain are such that evaluation reduces to solving a mutually recursive set of equations. This dissertation shows how abstract interpretation can be applied to a DSEL by replacing it with an abstract implementation of the same interface; evaluating a program with the abstract implementation yields an analysis result, rather than an executable. The abstract interpretation of DSELs provides a foundation upon which to build sophisticated error-checking and optimisation tools. This is illustrated with three examples: an alphabet analyser for CSP, an ambiguity test for parser combinators, and a definedness test for attribute grammars. Of these, the ambiguity test for parser combinators is probably the most important example, due to the prominence of parser combinators and their rather conspicuous lack of support for the well-known LL(k) test. In this dissertation, DSELs and their signatures are encoded using the polymorphic lambda calculus. This allows the correctness of the abstract interpretation of DSELs to be proved using the parametricity theorem: safety is derived for free from the polymorphic type of a program. Crucially, parametricity also solves a problem commonly encountered by other analysis methods: it ensures the correctness of the approach in the presence of higher-order functions.

Page generated in 0.0799 seconds