Spelling suggestions: "subject:"programmation logique inductive"" "subject:"programmations logique inductive""
1 |
Apprentissage de problèmes de contraintes / Constraint problems learningLopez, Matthieu 08 December 2011 (has links)
La programmation par contraintes permet de modéliser des problèmes et offre des méthodes de résolution efficaces. Cependant, sa complexité augmentant ces dernières années, son utilisation, notamment pour modéliser des problèmes, est devenue limitée à des utilisateurs possédant une bonne expérience dans le domaine. Cette thèse s’inscrit dans un cadre visant à automatiser la modélisation. Les techniques existantes ont montré des résultats encourageants mais certaines exigences rendent leur utilisation encore problématique. Dans une première partie, nous proposons de dépasser une limite existante qui réside dans la nécessité pour l’utilisateur de fournir des solutions du problème qu’il veut modéliser. En remplacement, il nous fournit des solutions de problèmes proches, c’est-à-dire de problèmes dont la sémantique de fond est la même mais dont les variables et leur domaine peuvent changer. Pour exploiter de telles données, nous proposons d’acquérir, grâce à des techniques de programmation logique inductive, un modèle plus abstrait que le réseau de contraintes. Une fois appris, ce modèle est ensuite transformé pour correspondre au problème initial que souhaitait résoudre l’utilisateur. Nous montrons également que la phase d’apprentissage se heurte à des limites pathologiques et qui nous ont contraints à développer un nouvel algorithme pour synthétiser ces modèles abstraits. Dans une seconde partie, nous nous intéressons à la possibilité pour l’utilisateur de ne pas donner d’exemples du tout. En partant d’un CSP sans aucune contrainte, notre méthode consiste à résoudre le problème de l’utilisateur de manière classique. Grâce à un arbre de recherche, nous affectons progressivement des valeurs aux variables. Quand notre outil ne peut décider si l’affectation partielle courante est correcte ou non, nous demandons à l’utilisateur de guider la recherche sous forme de requêtes. Ces requêtes permettent de trouver des contraintes à ajouter aux modèles du CSP et ainsi améliorer la recherche. / Constraint programming allows to model many kind of problems with efficient solving methods. However, its complexity has increased these last years and its use, notably to model problems, has become limited to people with a fair expertise in the domain. This thesis deals with automating the modeling task in constraint programming. Methods already exist, with encouraging results, but many requirements are debatable. In a first part, we propose to avoid the limitation consisting, for the user, in providing solutions of the problem she aims to solve. As a replacement of these solutions, the user has to provide solutions of closed problem, i.e problem with same semantic but where variables and domains can be different. To handle this kind of data, we acquire, thanks to inductive logic programming, a more abstract model than the constraint network. When this model is learned, it is translated in the very constraint network the user aims to model. We show the limitations of learning method to build such a model due to pathological problems and explain the new algorithm we have developed to build these abstract models. In a second part, we are interesting in the possibility to the user to not provide any examples. Starting with a CSP without constraints, our method consists in solving the problem the user wants in a standard way. Thanks to a search tree, we affect to each variable a value. When our tool cannot decide if the current partial affectation is correct or not, we ask to the user, with yes/no queries, to guide the search. These queries allow to find constraints to add to the model and then to improve the quality of the search.
|
2 |
Programmation logique inductive pour la classification et la transformation de documents semi-structurés / Inductive logic programing for tree classification and transformationDecoster, Jean 17 July 2014 (has links)
L’échange d’informations entre périphériques variés et sur internet soulève de nombreux problèmes par le volume et l’hétéroclisme des données échangées. La plupart de ces échanges utilisent le format XML. Afin de les faciliter, des traitements intelligents, comme la classification et la transformation automatiques, ont été développés. Le but de cette thèse est double : proposer un framework d'apprentissage pour la classification de documents XML et étudier l'apprentissage de transformations de documents XML. Le choix d’utiliser la Programmation Logique Inductive a été fait. Même si les méthodes d'apprentissage ont alors un surcoût algorithmique non négligeable (certaines opérations deviennent NP-dures), la représentation relationnelle semble adaptée aux documents XML de par son expressivité. Notre framework pour la classification fait suite à l'étude de familles de clauses pour la représentation de structures arborescentes. Il repose sur une réécriture des opérations de base de la PLI que sont la theta-subsomption et le moindre généralisé [Plotkin1971]. Nos algorithmes sont polynomiaux en temps dans la taille de leur entrée là où ceux standards sont exponentiels. Ils permettent une identification à la limite [Gold1967] de nos familles de clauses. Notre seconde contribution débute par la modélisation d’une famille de clauses dans la lignée des programmes fonctionnels [Paulson91]. Ces clauses sont une adaptation à la PLI des scripts d'édition et prennent en compte un contexte. Elles permettent la représentation de transformations de documents XML. Leurs apprentissages sont possibles grâce à deux algorithmes de type A*, approche courante en PLI (HOC-Learner [Santos2009]). / The recent proliferation of XML documents in databases and web applications rises some issues due to the numerous data exchanged and their diversity. To ease their uses, some smart means have been developed such as automatic classification and transformation. This thesis has two goals:• To propose a framework for the XML documents classification task.• To study the XML documents transformation learning.We have chosen to use Inductive Logic Programming. The expressiveness of logic programs grants flexibility in specifying the learning task and understandability to the induced theories. This flexibility implies a high computational cost, constraining the applicability of ILP systems. However, XML documents being trees, a good concession can be found.For our first contribution, we define clauses languages that allow encoding xml trees. The definition of our classification framework follows their studies. It stands on a rewriting of the standard ILP operations such as theta-subsumption and least general generalization [Plotkin1971]. Our algorithms are polynomials in time in the input size whereas the standard ones are exponentials. They grant an identification in the limit [Gold1967] of our languages.Our second contribution is the building of methods to learn XML documents transformations. It begins by the definition of a clauses class in the way of functional programs [Paulson91]. They are an ILP adaptation of edit scripts and allow a context. Their learning is possible thanks to two A*-like algorithms, a common ILP approach (HOC-Learner [Santos2009]).
|
3 |
Apprentissage de problèmes de contraintesLopez, Matthieu 08 December 2011 (has links) (PDF)
La programmation par contraintes permet de modéliser des problèmes et offre des méthodes de résolution efficaces. Cependant, sa complexité augmentant ces dernières années, son utilisation, notamment pour modéliser des problèmes, est devenue limitée à des utilisateurs possédant une bonne expérience dans le domaine. Cette thèse s'inscrit dans un cadre visant à automatiser la modélisation. Les techniques existantes ont montré des résultats encourageants mais certaines exigences rendent leur utilisation encore problématique. Dans une première partie, nous proposons de dépasser une limite existante qui réside dans la nécessité pour l'utilisateur de fournir des solutions du problème qu'il veut modéliser. En remplacement, il nous fournit des solutions de problèmes proches, c'est-à-dire de problèmes dont la sémantique de fond est la même mais dont les variables et leur domaine peuvent changer. Pour exploiter de telles données, nous proposons d'acquérir, grâce à des techniques de programmation logique inductive, un modèle plus abstrait que le réseau de contraintes. Une fois appris, ce modèle est ensuite transformé pour correspondre au problème initial que souhaitait résoudre l'utilisateur. Nous montrons également que la phase d'apprentissage se heurte à des limites pathologiques et qui nous ont contraints à développer un nouvel algorithme pour synthétiser ces modèles abstraits. Dans une seconde partie, nous nous intéressons à la possibilité pour l'utilisateur de ne pas donner d'exemples du tout. En partant d'un CSP sans aucune contrainte, notre méthode consiste à résoudre le problème de l'utilisateur de manière classique. Grâce à un arbre de recherche, nous affectons progressivement des valeurs aux variables. Quand notre outil ne peut décider si l'affectation partielle courante est correcte ou non, nous demandons à l'utilisateur de guider la recherche sous forme de requêtes. Ces requêtes permettent de trouver des contraintes à ajouter aux modèles du CSP et ainsi améliorer la recherche.
|
4 |
Apport des ontologies de domaine pour l'extraction de connaissances à partir de données biomédicales / Contribution of domain ontologies for knowledge discovery in biomedical dataPersoneni, Gabin 09 November 2018 (has links)
Le Web sémantique propose un ensemble de standards et d'outils pour la formalisation et l'interopérabilité de connaissances partagées sur le Web, sous la forme d'ontologies. Les ontologies biomédicales et les données associées constituent de nos jours un ensemble de connaissances complexes, hétérogènes et interconnectées, dont l'analyse est porteuse de grands enjeux en santé, par exemple dans le cadre de la pharmacovigilance. On proposera dans cette thèse des méthodes permettant d'utiliser ces ontologies biomédicales pour étendre les possibilités d'un processus de fouille de données, en particulier, permettant de faire cohabiter et d'exploiter les connaissances de plusieurs ontologies biomédicales. Les travaux de cette thèse concernent dans un premier temps une méthode fondée sur les structures de patrons, une extension de l'analyse formelle de concepts pour la découverte de co-occurences de événements indésirables médicamenteux dans des données patients. Cette méthode utilise une ontologie de phénotypes et une ontologie de médicaments pour permettre la comparaison de ces événements complexes, et la découverte d'associations à différents niveaux de généralisation, par exemple, au niveau de médicaments ou de classes de médicaments. Dans un second temps, on utilisera une méthode numérique fondée sur des mesures de similarité sémantique pour la classification de déficiences intellectuelles génétiques. On étudiera deux mesures de similarité utilisant des méthodes de calcul différentes, que l'on utilisera avec différentes combinaisons d'ontologies phénotypiques et géniques. En particulier, on quantifiera l'influence que les différentes connaissances de domaine ont sur la capacité de classification de ces mesures, et comment ces connaissances peuvent coopérer au sein de telles méthodes numériques. Une troisième étude utilise les données ouvertes liées ou LOD du Web sémantique et les ontologies associées dans le but de caractériser des gènes responsables de déficiences intellectuelles. On utilise ici la programmation logique inductive, qui s'avère adaptée pour fouiller des données relationnelles comme les LOD, en prenant en compte leurs relations avec les ontologies, et en extraire un modèle prédictif et descriptif des gènes responsables de déficiences intellectuelles. L'ensemble des contributions de cette thèse montre qu'il est possible de faire coopérer avantageusement une ou plusieurs ontologies dans divers processus de fouille de données / The semantic Web proposes standards and tools to formalize and share knowledge on the Web, in the form of ontologies. Biomedical ontologies and associated data represents a vast collection of complex, heterogeneous and linked knowledge. The analysis of such knowledge presents great opportunities in healthcare, for instance in pharmacovigilance. This thesis explores several ways to make use of this biomedical knowledge in the data mining step of a knowledge discovery process. In particular, we propose three methods in which several ontologies cooperate to improve data mining results. A first contribution of this thesis describes a method based on pattern structures, an extension of formal concept analysis, to extract associations between adverse drug events from patient data. In this context, a phenotype ontology and a drug ontology cooperate to allow a semantic comparison of these complex adverse events, and leading to the discovery of associations between such events at varying degrees of generalization, for instance, at the drug or drug class level. A second contribution uses a numeric method based on semantic similarity measures to classify different types of genetic intellectual disabilities, characterized by both their phenotypes and the functions of their linked genes. We study two different similarity measures, applied with different combinations of phenotypic and gene function ontologies. In particular, we investigate the influence of each domain of knowledge represented in each ontology on the classification process, and how they can cooperate to improve that process. Finally, a third contribution uses the data component of the semantic Web, the Linked Open Data (LOD), together with linked ontologies, to characterize genes responsible for intellectual deficiencies. We use Inductive Logic Programming, a suitable method to mine relational data such as LOD while exploiting domain knowledge from ontologies by using reasoning mechanisms. Here, ILP allows to extract from LOD and ontologies a descriptive and predictive model of genes responsible for intellectual disabilities. These contributions illustrates the possibility of having several ontologies cooperate to improve various data mining processes
|
5 |
Apprentissage multisource par programmation logique inductive : application à la caractérisation d'arythmies cardiaquesFromont, Elisa 07 December 2005 (has links) (PDF)
Ce travail a pour thème l'extraction de connaissances à partir de données provenant de plusieurs sources reflétant un même phénomène. L'objectif visé est l'amélioration de la qualité des systèmes de surveillance. Lorsque les données sont redondantes, l'utilisation de plusieurs sources permet de pallier aux problèmes de perte de signal et de bruit. Lorsque les données sont complémentaires, l'utilisation conjointe des différentes sources permet d'augmenter les performances en détection de ces systèmes. Nous appliquons nos travaux au domaine du diagnostic d'arythmies cardiaques. Nous utilisons une technique d'apprentissage artificiel relationnel (la programmation logique inductive) pour apprendre des règles discriminantes permettant de caractériser les arythmies à partir de plusieurs voies d'un électrocardiogramme et de mesures de pression artérielle. Pour exploiter la redondance des sources, nous apprenons dans un premier temps, des règles à partir des données des différentes sources prises séparément. Pour exploiter la complémentarité des sources, un apprentissage multisource naïf consisterait à apprendre globalement sur l'ensemble des données et avec un langage d'expression des concepts permettant de couvrir toute la richesse des données représentées. En alternative à un tel type d'apprentissage, nous proposons une méthode plus efficace qui s'appuie sur des apprentissages monosources, ie. effectués sur chacune des sources séparément, pour biaiser l'espace de recherche multisource. Le fait de s'appuyer sur les règles monosources permet de restreindre le langage des hypothèses ainsi que le nombre de relations possibles entre les objets représentés sur les différentes sources. Ce travail a été effectué dans le cadre du projet RNTS (Réseau National des Technologies et de la Santé) Cepica. Les résultats montrent que les règles apprises par apprentissage multisource sont au moins aussi bonnes que les règles monosources dans le cas où les données sont redondantes et meilleures dans les cas où les sources sont complémentaires. La technique d'apprentissage biaisé permet en outre d'apprendre des règles de manière beaucoup plus efficace que dans le cas naïf en bénéficiant d'un biais de langage généré automatiquement. Ces nouvelles règles sont incorporées au système Calicot pour la surveillance de patients souffrant de troubles du rythme cardiaque.<br />~
|
6 |
Acquisition automatique de lexiques sémantiques pour la recherche d'informationClaveau, Vincent 17 December 2003 (has links) (PDF)
De nombreuses applications du traitement automatique des langues (recherche d'information, traduction automatique, etc.) requièrent des ressources sémantiques spécifiques à leur tâche et à leur domaine. Pour répondre à ces besoins spécifiques, nous avons développé ASARES, un système d'acquisition d'informations sémantiques lexicales sur corpus. Celui-ci répond à un triple objectif : il permet de fournir des résultats de bonne qualité, ses résultats et le processus ayant conduit à leur extraction sont interprétables, et enfin, il est assez générique et automatique pour être aisément portable d'un corpus à un autre. Pour ce faire, ASARES s'appuie sur une technique d'apprentissage artificiel symbolique --- la programmation logique inductive --- qui lui permet d'inférer des patrons d'extraction morphosyntaxiques et sémantiques à partir d'exemples des éléments lexicaux sémantiques que l'on souhaite acquérir. Ces patrons sont ensuite utilisés pour extraire du corpus de nouveaux éléments. Nous montrons également qu'il est possible de combiner cette approche symbolique avec des techniques d'acquisition statistiques qui confèrent une plus grande automaticité à ASARES. Pour évaluer la validité de notre méthode, nous l'avons appliquée à l'extraction d'un type de relations sémantiques entre noms et verbes définies au sein du Lexique génératif appelées relations qualia. Cette tâche d'acquisition revêt deux intérêts principaux. D'une part, ces relations ne sont définies que de manière théorique ; l'interprétabilité linguistique des patrons inférés permet donc d'en préciser le fonctionnement et les réalisations en contexte. D'autre part, plusieurs auteurs ont noté l'intérêt de ce type de relations dans le domaine de la recherche d'information pour donner accès à des reformulations sémantiquement équivalentes d'une même idée. Grâce à une expérience d'extension de requêtes, nous vérifions expérimentalement cette affirmation : nous montrons que les résultats d'un système de recherche exploitant ces relations qualia, acquises par ASARES, sont améliorés de manière significative quoique localisée.
|
7 |
Découverte de motifs relationnels en bioinformatique: application à la prédiction de ponts disulfuresJacquemin, Ingrid 07 December 2005 (has links) (PDF)
Déterminer la structure 3D des protéines expérimentalement est une tâche très lourde et coûteuse, qui peut s'avérer parfois impossible à réaliser. L'arrivée massive de données provenant des programmes de séquençage à grande échelle impose de passer d'une approche biochimique à une approche bioinformatique, et nécessite en particulier de développer des méthodes de prédiction sur des séquences.<br />Cette thèse propose l'exploration de deux nouvelles pistes pour progresser dans la résolution de prédiction de ponts disulfures dans les protéines. Cette liaison covalente stabilise et contraint fortement la conformation spatiale de la protéine et la connaissance des positions où elle intervient peut réduire considérablement la complexité du problème de la prédiction de la structure 3D. Pour cela, nous utilisons dans un premier temps, l'inférence grammaticale et plus particulièrement les langages de contrôle introduit par Y. Takada, puis dans un deuxième temps, la programmation logique inductive.<br />Diverses expériences visent à confronter un cadre théorique d'apprentissage et des algorithmes généraux d'inférence grammaticale régulière à une application pratique de prédiction d'appariements spécifiques au sein d'une séquence protéique. D'autres expérimentations montrent que la programmation logique inductive donne de bons résultats sur la prédiction de l'état oxydé des cystéines en inférant des règles interprétables par les biologistes. Nous proposons un algorithme d'induction heuristique dont l'idée est d'effectuer plusieurs phases d'apprentissage en tenant compte des résultats obtenus aux phases précédentes permettant ainsi de diminuer considérablement la combinatoire dans les espaces d'hypothèses logiques en construisant des règles de plus en plus discriminantes.
|
8 |
Evolution et apprentissage automatique pour l'annotation fonctionnelle et la classification des homologies lointains en protéines.Silva Bernardes, Juliana 28 March 2012 (has links) (PDF)
La détection d'homologues lointains est essentielle pour le classement fonctionnel et structural des séquences protéiques et pour l'amélioration de l'annotation des génomes très divergents. Pour le classement des séquences, nous présentons la méthode "ILP-SVM homology", combinant la programmation logique inductive (PLI) et les modèles propositionnels. Elle propose une nouvelle représentation logique des propriétés physico-chimiques des résidus et des positions conservées au sein de l'alignement de séquences. Ainsi, PLI trouve les règles les plus fréquentes et les utilise pour la phase d'apprentissage utilisant des modèles d'arbre de décision ou de machine à vecteurs de support. La méthode présente au moins les mêmes performances que les autres méthodes trouvées dans la littérature. Puis, nous proposons la méthode CASH pour annoter les génomes très divergents. CASH a été appliqué à Plasmodium falciparum, mais reste applicable à toutes les espèces. CASH utilise aussi bien l'information issue de génomes proches ou éloignés de P. falciparum. Chaque domaine connu est ainsi représenté par un ensemble de modèles évolutifs, et les sorties sont combinées par un méta-classificateur qui assigne un score de confiance à chaque prédiction. Basé sur ce score et sur des propriétés de co-ocurrences de domaines, CASH trouve l'architecture la plus probable de chaque séquence en appliquant une approche d'optimisation multi-objectif. CASH est capable d'annoter 70% des domaines protéiques de P. falciparum, contre une moyenne de 58% pour ses concurrents. De nouveaux domaines protéiques ont pu être caractérisés au sein de protéines de fonction inconnue ou déjà annotées.
|
9 |
Apprentissage de connaissances structurelles à partir d’images satellitaires et de données exogènes pour la cartographie dynamique de l’environnement amazonien / Structurel Knowledge learning from satellite images and exogenous data for dynamic mapping of the amazonian environmentBayoudh, Meriam 06 December 2013 (has links)
Les méthodes classiques d'analyse d'images satellites sont inadaptées au volume actuel du flux de données. L'automatisation de l'interprétation de ces images devient donc cruciale pour l'analyse et la gestion des phénomènes observables par satellite et évoluant dans le temps et l'espace. Ce travail vise à automatiser la cartographie dynamique de l'occupation du sol à partir d'images satellites, par des mécanismes expressifs, facilement interprétables en prenant en compte les aspects structurels de l'information géographique. Il s'inscrit dans le cadre de l'analyse d'images basée objet. Ainsi, un paramétrage supervisé d'un algorithme de segmentation d'images est proposé. Dans un deuxième temps, une méthode de classification supervisée d'objets géographiques est présentée combinant apprentissage automatique par programmation logique inductive et classement par l'approche multi-class rule set intersection. Ces approches sont appliquées à la cartographie de la bande côtière Guyanaise. Les résultats démontrent la faisabilité du paramétrage de la segmentation, mais également sa variabilité en fonction des classes de la carte de référence et des données d'entrée. Les résultats de la classification supervisée montrent qu'il est possible d'induire des règles de classification expressives, véhiculant des informations cohérentes et structurelles dans un contexte applicatif donnée et conduisant à des valeurs satisfaisantes de précision et de KAPPA (respectivement 84,6% et 0,7). Ce travail de thèse contribue ainsi à l'automatisation de la cartographie dynamique à partir d'images de télédétection et propose des perspectives originales et prometteuses. / Classical methods for satellite image analysis are inadequate for the current bulky data flow. Thus, automate the interpretation of such images becomes crucial for the analysis and management of phenomena changing in time and space, observable by satellite. Thus, this work aims at automating land cover cartography from satellite images, by expressive and easily interpretable mechanism, and by explicitly taking into account structural aspects of geographic information. It is part of the object-based image analysis framework, and assumes that it is possible to extract useful contextual knowledge from maps. Thus, a supervised parameterization methods of a segmentation algorithm is proposed. Secondly, a supervised classification of geographical objects is presented. It combines machine learning by inductive logic programming and the multi-class rule set intersection approach. These approaches are applied to the French Guiana coastline cartography. The results demonstrate the feasibility of the segmentation parameterization, but also its variability as a function of the reference map classes and of the input data. Yet, methodological developments allow to consider an operational implementation of such an approach. The results of the object supervised classification show that it is possible to induce expressive classification rules that convey consistent and structural information in a given application context and lead to reliable predictions, with overall accuracy and Kappa values equal to, respectively, 84,6% and 0,7. In conclusion, this work contributes to the automation of the dynamic cartography from remotely sensed images and proposes original and promising perpectives
|
10 |
Les systèmes cognitifs dans les réseaux autonomes : une méthode d'apprentissage distribué et collaboratif situé dans le plan de connaissance pour l'auto-adaptation / Cognitive systems in automatic networks : a distributed and collaborative learning method in knoledge plane for self-adapting functionMbaye, Maïssa 17 December 2009 (has links)
L'un des défis majeurs pour les décennies à venir, dans le domaine des technologies de l'information et de la communication, est la réalisation du concept des réseaux autonomes. Ce paradigme a pour objectif de rendre les équipements réseaux capables de s'autogérer, c'est-à-dire qu'ils pourront s'auto-configurer, s'auto-optimiser, s'auto-protéger et s'auto-restaurer en respectant les objectifs de haut niveau de leurs concepteurs. Les architectures majeures de réseaux autonomes se basent principalement sur la notion de boucle de contrôle fermée permettant l'auto-adaptation (auto-configuration et auto-optimisation) de l'équipement réseau en fonction des événements qui surviennent sur leur environnement. Le plan de connaissance est une des approches, très mise en avant ces dernières années par le monde de la recherche, qui suggère l'utilisation des systèmes cognitifs (l'apprentissage et le raisonnement) pour fermer la boucle de contrôle. Cependant, bien que les architectures majeures de gestion autonomes intègrent des modules d'apprentissage sous forme de boite noire, peu de recherches s'intéressent véritablement au contenu de ces boites. C'est dans ce cadre que nous avons fait une étude sur l'apport potentiel de l'apprentissage et proposé une méthode d'apprentissage distribué et collaboratif. Nous proposons une formalisation du problème d'auto-adaptation sous forme d'un problème d'apprentissage d'état-actions. Cette formalisation nous permet de définir un apprentissage de stratégies d'auto-adaptation qui se base sur l'utilisation de l'historique des transitions et utilise la programmation logique inductive pour découvrir de nouvelles stratégies à partir de celles déjà découvertes. Nous définissons, aussi un algorithme de partage de la connaissance qui permet d'accélérer le processus d'apprentissage. Enfin, nous avons testé l'approche proposé dans le cadre d'un réseau DiffServ et montré sa transposition sur le contexte du transport de flux multimédia dans les réseaux sans-fil 802.11. / One of the major challenges for decades to come, in the field of information technologies and the communication, is realization of autonomic paradigm. It aims to enable network equipments to self-manage, enable them to self-configure, self-optimize, self-protect and self-heal according to high-level objectives of their designers. Major architectures of autonomic networking are based on closed control loop allowing self-adapting (self-configuring and self-optimizing) of the network equipment according to the events which arise on their environment. Knowledge plane is one approach, very emphasis these last years by researchers, which suggests the use of the cognitive systems (machine learning and the reasoning) to realize closed control loop. However, although the major autonomic architectures integrate machine learning modules as functional block, few researches are really interested in the contents of these blocks. It is in this context that we made a study on the potential contribution machine learning and proposed a method of distributed and collaborative machine learning. We propose a formalization self-adapting problem in term of learning configuration strategies (state-actions) problem. This formalization allows us to define a strategies machine learning method for self-adapting which is based on the history observed transitions and uses inductive logic programming to discover new strategies from those already discovered. We defined, also a knowledge sharing algorithm which makes network components collaborate to improve learning process. Finally, we tested our approach in DiffServ context and showed its transposition on multimedia streaming in 802.11 wireless networks.
|
Page generated in 0.1836 seconds