• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 16
  • 15
  • 15
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A MapReduce Framework for Heterogeneous Computing Architectures

Elteir, Marwa Khamis 01 June 2013 (has links)
Nowadays, an increasing number of computational systems are equipped with heterogeneous compute resources, i.e., following different architecture. This applies to the level of a single chip, a single node and even supercomputers and large-scale clusters. With its impressive price-to-performance ratio as well as power efficiently compared to traditional multicore processors, graphics processing units (GPUs) has become an integrated part of these systems. GPUs deliver high peak performance; however efficiently exploiting their computational power requires the exploration of a multi-dimensional space of optimization methodologies, which is challenging even for the well-trained expert. The complexity of this multi-dimensional space arises not only from the traditionally well known but arduous task of architecture-aware GPU optimization at design and compile time, but it also arises in the partitioning and scheduling of the computation across these heterogeneous resources. Even with programming models like the Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), the developer still needs to manage the data transfer be- tween host and device and vice versa, orchestrate the execution of several kernels, and more arduously, optimize the kernel code. In this dissertation, we aim to deliver a transparent parallel programming environment for heterogeneous resources by leveraging the power of the MapReduce programming model and OpenCL programming language. We propose a portable architecture-aware framework that efficiently runs an application across heterogeneous resources, specifically AMD GPUs and NVIDIA GPUs, while hiding complex architectural details from the developer. To further enhance performance portability, we explore approaches for asynchronously and efficiently distributing the computations across heterogeneous resources. When applied to benchmarks and representative applications, our proposed framework significantly enhances performance, including up to 58% improvement over traditional approaches to task assignment and up to a 45-fold improvement over state-of-the-art MapReduce implementations. / Ph. D.
12

Erstellung einer einheitlichen Taxonomie für die Programmiermodelle der parallelen Programmierung

Nestmann, Markus 02 May 2017 (has links) (PDF)
Durch die parallele Programmierung wird ermöglicht, dass Programme nebenläufig auf mehreren CPU-Kernen oder CPUs ausgeführt werden können. Um das parallele Programmieren zu erleichtern, wurden diverse Sprachen (z.B. Erlang) und Bibliotheken (z.B. OpenMP) aufbauend auf parallele Programmiermodelle (z.B. Parallel Random Access Machine) entwickelt. Möchte z.B. ein Softwarearchitekt sich in einem Projekt für ein Programmiermodell entscheiden, muss er dabei auf mehrere wichtige Kriterien (z.B. Abhängigkeiten zur Hardware) achten. erleichternd für diese Suche sind Übersichten, die die Programmiermodelle in diesen Kriterien unterscheiden und ordnen. Werden existierenden Übersichten jedoch betrachtet, finden sich Unterschiede in der Klassifizierung, den verwendeten Begriffen und den aufgeführten Programmiermodellen. Diese Arbeit begleicht dieses Defizit, indem zuerst durch ein Systematic Literature Review die existierenden Taxonomien gesammelt und analysiert werden. Darauf aufbauend wird eine einheitliche Taxonomie erstellt. Mit dieser Taxonomie kann eine Übersicht über die parallelen Programmiermodelle erstellt werden. Diese Übersicht wird zusätzlich durch Informationen zu den jeweiligen Abhängigkeiten der Programmiermodelle zu der Hardware-Architektur erweitert werden. Der Softwarearchitekt (oder Projektleiter, Softwareentwickler,...) kann damit eine informierte Entscheidung treffen und ist nicht gezwungen alle Programmiermodelle einzeln zu analysieren.
13

Designing Scalable and High Performance One Sided Communication Middleware for Modern Interconnects

Santhanaraman, Gopalakrishnan 02 September 2009 (has links)
No description available.
14

Scalable Task Parallel Programming in the Partitioned Global Address Space

Dinan, James S. 02 September 2010 (has links)
No description available.
15

An Adaptive Framework for Managing Heterogeneous Many-Core Clusters

Rafique, Muhammad Mustafa 21 October 2011 (has links)
The computing needs and the input and result datasets of modern scientific and enterprise applications are growing exponentially. To support such applications, High-Performance Computing (HPC) systems need to employ thousands of cores and innovative data management. At the same time, an emerging trend in designing HPC systems is to leverage specialized asymmetric multicores, such as IBM Cell and AMD Fusion APUs, and commodity computational accelerators, such as programmable GPUs, which exhibit excellent price to performance ratio as well as the much needed high energy efficiency. While such accelerators have been studied in detail as stand-alone computational engines, integrating the accelerators into large-scale distributed systems with heterogeneous computing resources for data-intensive computing presents unique challenges and trade-offs. Traditional programming and resource management techniques cannot be directly applied to many-core accelerators in heterogeneous distributed settings, given the complex and custom instruction sets architectures, memory hierarchies and I/O characteristics of different accelerators. In this dissertation, we explore the design space of using commodity accelerators, specifically IBM Cell and programmable GPUs, in distributed settings for data-intensive computing and propose an adaptive framework for programming and managing heterogeneous clusters. The proposed framework provides a MapReduce-based extended programming model for heterogeneous clusters, which distributes tasks between asymmetric compute nodes by considering workload characteristics and capabilities of individual compute nodes. The framework provides efficient data prefetching techniques that leverage general-purpose cores to stage the input data in the private memories of the specialized cores. We also explore the use of an advanced layered-architecture based software engineering approach and provide mixin-layers based reusable software components to enable easy and quick deployment of heterogeneous clusters. The framework also provides multiple resource management and scheduling policies under different constraints, e.g., energy-aware and QoS-aware, to support executing concurrent applications on multi-tenant heterogeneous clusters. When applied to representative applications and benchmarks, our framework yields significantly improved performance in terms of programming efficiency and optimal resource management as compared to conventional, hand-tuned, approaches to program and manage accelerator-based heterogeneous clusters. / Ph. D.
16

Programming High-Performance Clusters with Heterogeneous Computing Devices

Aji, Ashwin M. 19 May 2015 (has links)
Today's high-performance computing (HPC) clusters are seeing an increase in the adoption of accelerators like GPUs, FPGAs and co-processors, leading to heterogeneity in the computation and memory subsystems. To program such systems, application developers typically employ a hybrid programming model of MPI across the compute nodes in the cluster and an accelerator-specific library (e.g.; CUDA, OpenCL, OpenMP, OpenACC) across the accelerator devices within each compute node. Such explicit management of disjointed computation and memory resources leads to reduced productivity and performance. This dissertation focuses on designing, implementing and evaluating a runtime system for HPC clusters with heterogeneous computing devices. This work also explores extending existing programming models to make use of our runtime system for easier code modernization of existing applications. Specifically, we present MPI-ACC, an extension to the popular MPI programming model and runtime system for efficient data movement and automatic task mapping across the CPUs and accelerators within a cluster, and discuss the lessons learned. MPI-ACC's task-mapping runtime subsystem performs fast and automatic device selection for a given task. MPI-ACC's data-movement subsystem includes careful optimizations for end-to-end communication among CPUs and accelerators, which are seamlessly leveraged by the application developers. MPI-ACC provides a familiar, flexible and natural interface for programmers to choose the right computation or communication targets, while its runtime system achieves efficient cluster utilization. / Ph. D.
17

Techniques de simulation rapide quasi cycle-précise pour l'exploration d'architectures multicoeur / Fast Cycle-approximate Simulation Techniques for Manycore Architecture Exploration

Butko, Anastasiia 11 December 2015 (has links)
Le calcul intensif joue un rôle moteur de premier plan pour de nombreux domaines scientifiques. La croissance en puissance crête des supercalculateurs a évolué du téraflops au pétaflops en l'espace d'une décennie. Toutefois, la consommation d'énergie associée extrêmement élevée ainsi que le coût associé ont motivé des recherches vers des technologies plus efficaces énergétiquement comme l'utilisation de processeurs issus du domaine des systèmes embarqués à faible puissance.Selon les prévisions, les systèmes multicœurs émergents seront constitués de centaines de cœurs d'ici la fin de la décennie. Cette évolution nécessite des solutions efficaces pour l'exploration de l'espace de conception et le débogage. Les simulateurs industriels et académiques disponibles à ce jour diffèrent en termes de compromis entre vitesse de simulation et précision. Leur adoption est généralement définie par le niveau d'exploration souhaité. Les simulateurs quasi cycle-précis sont populaires et attrayants pour l'exploration architecturale. Alors que la vitesse de simulation est trivialement observée, le niveau de précision de ces simulateurs reste souvent flou. En outre, bien que permettant une évaluation flexible et détaillée de l'architecture, les simulateurs quasi cycle-précis entraînent des vitesses de simulation lentes ce qui limite leur champ d'application pour des systèmes avec des centaines de cœurs. Cela exige des approches alternatives capables de fournir des simulations rapides tout en préservant une précision élevée ce qui est cruciale pour l'exploration architecturale.Dans cette thèse, des modèles d'architectures multicœurs complexes ont été développés et évalués en utilisant des systèmes de simulation quasi cycle-précis pour l'exploration de la performance et de la puissance. Sur cette base, une approche hybride orientée traces d'exécution a été proposée pour permettre une exploration rapide, flexible et précise des architectures multicœurs à grande échelle. Sur la base de l'environnement de simulation proposé, plusieurs configurations de systèmes manycoeurs ont été construites et évaluées en évaluant le passage à l'échelle des performances. Enfin, des configurations alternatives d'architectures multicœurs hétérogènes ont été proposées et ont montré des améliorations significatives en termes d'efficacité énergétique. / Since the computational needs precipitously grow each year, HPC technology becomes a driving force for numerous scientific and consumer areas. The most powerful supercomputer has been progressing from TFLOPS to PFLOPS throughout the last ten years. However, the extremely high power consumption and therefore the high cost pushed researchers to explore more energy-efficient technologies, such as the use of low-power embedded SoCs.The evolution of emerging manycore systems, forecasted to feature hundreds of cores by the end of the decade calls for efficient solutions for the design space exploration and debugging. Available industrial and academic simulators differ in terms of simulation speed/accuracy trade-offs. Cycle-approximate simulators are popular and attractive for architectural exploration. Even though enabling flexible and detailed architecture evaluation, cycle-approximate simulators entail slow simulation speeds, thereby limiting their scope of applicability for systems with hundreds of cores. This calls for alternative approaches capable of providing high simulation speed while preserving accuracy that is crucial to architectural exploration.In this thesis, we evaluate cycle-approximate simulation techniques for fast and accurate exploration of multi- and manycore architectures. Expecting to significantly reduce simulation time still preserving the accuracy at the cycle-approximate level, we propose a hybrid trace-oriented approach to enable flexible manycore architecture simulation. We design a set of simulation techniques to overcome the main weaknesses of the trace-oriented approach. The trace synchronization technique aims to manage control and data dependencies arising from the abstraction of processor cores. The trace replication technique is proposed to simulate manycore architectures using a finite set of pre-collected traces. The computation phase scaling technique is designed to enable flexible switching between multiple processor models without considering microarchitectural difference but taking into account the computation speed ratio. Based on the proposed simulation environment, we explore several manycore architectures in terms of performance and energy-efficiency trade-offs.
18

Deterministic and Stochastic Bellman's Optimality Principles on Isolated Time Domains and Their Applications in Finance

Turhan, Nezihe 01 May 2011 (has links)
The concept of dynamic programming was originally used in late 1949, mostly during the 1950s, by Richard Bellman to describe decision making problems. By 1952, he refined this to the modern meaning, referring specifically to nesting smaller decision problems inside larger decisions. Also, the Bellman equation, one of the basic concepts in dynamic programming, is named after him. Dynamic programming has become an important argument which was used in various fields; such as, economics, finance, bioinformatics, aerospace, information theory, etc. Since Richard Bellman's invention of dynamic programming, economists and mathematicians have formulated and solved a huge variety of sequential decision making problems both in deterministic and stochastic cases; either finite or infinite time horizon. This thesis is comprised of five chapters where the major objective is to study both deterministic and stochastic dynamic programming models in finance. In the first chapter, we give a brief history of dynamic programming and we introduce the essentials of theory. Unlike economists, who have analyzed the dynamic programming on discrete, that is, periodic and continuous time domains, we claim that trading is not a reasonably periodic or continuous act. Therefore, it is more accurate to demonstrate the dynamic programming on non-periodic time domains. In the second chapter we introduce time scales calculus. Moreover, since it is more realistic to analyze a decision maker’s behavior without risk aversion, we give basics of Stochastic Calculus in this chapter. After we introduce the necessary background, in the third chapter we construct the deterministic dynamic sequence problem on isolated time scales. Then we derive the corresponding Bellman equation for the sequence problem. We analyze the relation between solutions of the sequence problem and the Bellman equation through the principle of optimality. We give an example of the deterministic model in finance with all details of calculations by using guessing method, and we prove uniqueness and existence of the solution by using the Contraction Mapping Theorem. In the fourth chapter, we define the stochastic dynamic sequence problem on isolated time scales. Then we derive the corresponding stochastic Bellman equation. As in the deterministic case, we give an example in finance with the distributions of solutions.
19

Modèles de programmation et supports exécutifs pour architectures hétérogènes / Programming Models and Runtime Systems for Heterogeneous Architectures

Henry, Sylvain 14 November 2013 (has links)
Le travail réalisé lors de cette thèse s'inscrit dans le cadre du calcul haute performance sur architectures hétérogènes. Pour faciliter l'écriture d'applications exploitant ces architectures et permettre la portabilité des performances, l'utilisation de supports exécutifs automatisant la gestion des certaines tâches (gestion de la mémoire distribuée, ordonnancement des noyaux de calcul) est nécessaire. Une approche bas niveau basée sur le standard OpenCL est proposée ainsi qu'une approche de plus haut niveau basée sur la programmation fonctionnelle parallèle, la seconde permettant de pallier certaines difficultés rencontrées avec la première (notamment l'adaptation de la granularité). / This work takes part in the context of high-performance computing on heterogeneous architectures. Runtime systems are increasingly used to make programming these architectures easier and to ensure performance portability by automatically dealing with some tasks (management of the distributed memory, scheduling of the computational kernels...). We propose a low-level approach based on the OpenCL specification as well as a high-level approach based on parallel functional programming.
20

Active Data - Enabling Smart Data Life Cycle Management for Large Distributed Scientific Data Sets / Active Data − Gestion Intelligente du Cycle de Vie des Grands Jeux de Données Scientifiques Distribués

Simonet, Anthony 08 July 2015 (has links)
Dans tous les domaines, le progrès scientifique repose de plus en plus sur la capacité à exploiter des volumes de données toujours plus gigantesques. Alors que leur volume augmente, la gestion de ces données se complexifie. Un point clé est la gestion du cycle de vie des données, c'est à dire les diverses opérations qu'elles subissent entre leur création et leur disparition : transfert, archivage, réplication, suppression, etc. Ces opérations, autrefois simples, deviennent ingérables lorsque le volume des données augmente de manière importante, au vu de l'hétérogénéité des logiciels utilisés d'une part, et de la complexité des infrastructures mises en œuvre d'autre part.Nous présentons Active Data, un méta-modèle, une implémentation et un modèle de programmation qui permet de représenter formellement et graphiquement le cycle de vie de données présentes dans un assemblage de systèmes et d'infrastructures hétérogènes, en exposant naturellement la réplication, la distribution et les différents identifiants des données. Une fois connecté à des applications existantes, Active Data expose aux utilisateurs ou à des programmes l'état d'avancement des données dans leur cycle de vie, en cours d'exécution, tout en gardant leur trace lorsqu'elles passent d'un système à un autre.Le modèle de programmation Active Data permet d'exécuter du code à chaque étape du cycle de vie des données. Les programmes écrits avec Active Data ont à tout moment accès à l'état complet des données, à la fois dans tous les systèmes et dans toutes les infrastructures sur lesquels elles sont distribuées. Nous présentons des évaluations de performance et des exemples d'utilisation qui attestent de l'expressivité du modèle de programmation et de la qualité de l'implémentation. Enfin, nous décrivons l'implémentation d'un outil de Surveillance des données basé sur Active Data pour l'expérience Advanced Photon Source qui permet aux utilisateurs de suivre la progression de leurs données, d'automatiser la plupart des tâches manuelles, d'obtenir des notifications pertinente parmi une masse gigantesque d'événements, ainsi que de détecter et corriger de nombreuses erreurs sans intervention humaine.Ce travail propose des perspectives intéressantes, en particulier dans les domaines de la provenance des données et de l'open data, tout en facilitant la collaboration entre les scientifiques de communautés différentes. / In all domains, scientific progress relies more and more on our ability to exploit ever growing volumes of data. However, as datavolumes increase, their management becomes more difficult. A key point is to deal with the complexity of data life cycle management,i.e. all the operations that happen to data between their creation and there deletion: transfer, archiving, replication, disposal etc.These formerly straightforward operations become intractable when data volume grows dramatically, because of the heterogeneity ofdata management software on the one hand, and the complexity of the infrastructures involved on the other.In this thesis, we introduce Active Data, a meta-model, an implementation and a programming model that allow to represent formally and graphically the life cycle of data distributed in an assemblage of heterogeneous systems and infrastructures, naturally exposing replication, distribution and different data identifiers. Once connected to existing applications, Active Data exposes the progress of data through their life cycle at runtime to users and programs, while keeping their track as it passes from a system to another.The Active Data programming model allows to execute code at each step of the data life cycle. Programs developed with Active Datahave access at any time to the complete state of data in any system and infrastructure it is distributed to.We present micro-benchmarks and usage scenarios that demonstrate the expressivity of the programming model and the implementationquality. Finally, we describe the implementation of a Data Surveillance framework based on Active Data for theAdvanced Photon Source experiment that allows scientists to monitor the progress of their data, automate most manual tasks,get relevant notifications from huge amount of events, and detect and recover from errors without human intervention.This work provides interesting perspectives in data provenance and open data in particular, while facilitating collaboration betweenscientists from different communities.

Page generated in 0.0696 seconds