• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficacité d’un analogue d’Imiqualines, l’EAPB0503 : Un nouveau traitement prometteur contre la Leishmaniose Cutanée / Efficacy of the Imiqualine analog EAPB0503 against Cutaneous Leishmaniasis : A promising new treatment paradigm

El Hajj, Rana 22 June 2018 (has links)
La leishmaniose cutanée (LC) est une infection parasitaire classifiée par l’Organisation de Santé Mondiale (WHO) comme étant une des maladies tropicales négligées non-contrôlées. Dans la région du Moyen Orient, la LC est généralement endémique en Syrie et elle est causée principalement par Leishmania tropica et Leishmania major. La LC a été récemment introduite à des pays non endémiques, suite au déplacement intense des réfugiés Syriens échappant à la crise. Les interventions thérapeutiques contre la LC incluent des traitements locaux, systémiques et physiques. En revanche, le risque élevé de sélection et de résistance des parasites aux traitements actuels suscitent une quête sérieuse, pour trouver de nouvelles approches thérapeutiques. L’Imiquimod est un composé immunomodulateur approuvé pour utilisation clinique, et présente une efficacité vis-à-vis de certaines espèces de Leishmania. Dans cette étude, notre intérêt s’est focalisé sur l’efficacité d’un analogue de l’Imiquimod, l’EAPB0503, contre les stades promastigotes et amastigotes de L.tropica et L.major.Nos résultats montrent que l’Imiquimod et particulièrement l’EAPB0503 affectent les deux espèces. L’Imiquimod affecte majoritairement la motilité des promastigotes des deux espèces, alors que l’EAPB0503 affecte la motilité des promastigotes de L. major mais surtout l’invasion des promastigotes de L. tropica dans les macrophages. Les deux composés réduisent la réplication des amastigotes, avec un effet plus prominent de l’EAPB0503. Cet effet est médié par l’augmentation de l’expression du récepteur toll-Like-7 (TLR7), particulièrement pour l’Imiquimod et d’une manière moins importante pour l’EAPB0503. Les deux composés induisent l’activation de la voie de signalisation canonique de NF-κB. Ceci conduit à une production des cytokines pro-inflammatoires, et une diminution des cytokines anti-inflammatoires expliquant l’activité leishmanicide des deux composés. L’EAPB0503 semble agir via un autre TLR que l’imiquimod, comme il induit une expression plus élevée des transcrits TLR8 et TLR9, conférant une protection contre l’infection.Collectivement, nos résultats montrent l’effet de l’Imiquimod contre l’espèce la plus aggressive, L. tropica, et souligne l’activité plus puissante de l’EAPB0503 contre les deux espèces. De plus, cette étude montre le mécanisme d’action de ces deux composés, qui vraisemblablement activent des TLRs différents, mais finissent par induire la voie NF-κB et la réponse immunitaire correspondante. Ces résultats soulignent l’importance des drogues immuno-modulatrices contre la LC et ouvrent des perspectives sur des études précliniques puis cliniques de ces composés. / Cutaneous Leishmaniasis (CL) is a parasitic infection classified by the WHO as one of the most uncontrolled spreading neglected diseases. In the Middle East Region, CL is mostly endemic in Syria where it is mainly caused by Leishmania tropica and Leishmania major. CL has been lately introduced to under endemic countries, following the large-scale displacement of refugees from Syria fleeing the crisis. Therapeutic interventions against CL include local, systemic and physical treatments. However, the high risk for selection and spread of drug-resistant parasites is high; consequently new therapeutic approaches are still needed. Imiquimod is an FDA approved immunomodulatory compound with a tested efficacy against some leishmania species. In this study, our interest was to investigate the efficacy of an Imiquimod analog, EAPB0503 in comparison to the original compound, against promastigote and amastigote stages of L.tropica and L.major.We showed that Imiquimod affects the motility of promastigotes of both strains. EAPB0503 affected L. major promastigotes’ motility and impaired the invasion of L.tropica promastigotes into macrophages. Both drugs reduced amastigote replication, with a higher potency of EAPB0503. This activity is due to the upregulation of Toll-Like Receptor-7 (TLR7), mainly by Imiquimod, and to a lesser extent by EAPB0503. Importantly, both drugs activated the NF-κB canonical pathway leading to production of pro-inflammatory cytokines and upregulation of i-NOS levels. A decrease of anti-inflammatory cytokines secretion was obtained, explaining the leishmanicidal activity of both drugs. Importantly, EAPB0503 led to a prominent increase in TLR8 and TLR9 transcripts, presumably conferring protection against the infection.Collectively, our findings show the effect of Imiquimod against both strains especially, the aggressive L. tropica strain. We also show that EAPB0503 displays a more potent in vitro leishmanicidal activity than Imiquimod. These drugs seemingly activate different TLRs, but both activate the canonical NF-κB pathway and its subsequent mediated immune response. These results highlight the promising effect of immunomodulatory drugs against CL and warrant an in depth in vivo preclinical then clinical studies of these compounds.
2

Papel dos proteassomas na interação e desenvolvimento de Leishmania chagasi em macrófagos murinos. / Role of parasite proteasomes in the infectivity and intracellular development of Leishmania chagasi in murine macrophages.

Jardim, Izaltina Silva 30 March 2001 (has links)
Nas células eucariotas a maioria das proteínas citoplasmáticas não são degradadas nos lisossomas, mas em organelas altamente conservadas encontradas em humanos, arquibactérias, plantas e leveduras, os proteassomas. Esta estrutura multicatalítica é constituída por componentes menores, cujo núcleo funcional é o componente 20S, que contém várias atividades proteolíticas (tríptica, quimotríptica, de peptidilglutamil peptidase, BrAAP e SNAAP). Esse componente 20S, associado ao complexo regulatório 19S, que é composto de múltiplas ATPases, forma o complexo 26S, responsável pela degradação de proteínas conjugadas com a ubiquitina. Estas estruturas citosólicas certamente desempenham papel importante no desenvolvimento de protozoários parasitas e na sua interação com células dos hospedeiros permissivos. Nesta dissertação, apresentamos um estudo sobre o papel do proteassoma na interação e desenvolvimento de promastigotas de Leishmania chagasi em macrófagos murinos. Inicialmente, purificamos e caracterizamos parcialmente o proteassoma de promastigotas de L. chagasi. Observamos que o complexo presente na L. chagasi possui atividades proteolíticas frente a pelo menos dois substratos sintéticos, LLVY-AMC e LRR-AMC, que avaliam, respectivamente, as atividades quimiotripsina-símile e tripsina-símile. A atividade tripsina-simile é maior que a atividade quimiotripsina-simile; e além disso, esta última é totalmente inibida pela lactacistina, um inibidor específico do proteassoma, enquanto a atividade tripsina-simile é apenas parcialmente inibida. Utilizando a lactacistina foi possível analisar o papel desse complexo proteolítico durante a infecção e desenvolvimento intracelular da L. chagasi. Promastigotas mantidas em cultura na presença de 50μM de lactacistina tiveram seu crescimento bloqueado. Essas promastigotas eram capazes de infectar macrófagos peritoneais de camundongos BALB/c, mas não conseguiam sobreviver dentro desses macrófagos. Esta incapacidade de sobrevivência foi específica para os parasitas tratados com a lactacistina, não sendo observado nos parasitas tratados com outros inibidores de proteases. Estes resultados sugerem que o proteassoma pode ter um papel importante no desenvolvimento intracelular e na replicação das promastigotas de L. chagasi no hospedeiro vertebrado. / Proteasomes are multicatalitic and multisubunit endopeptidase complexes widely distributed in eukaryotic cells. These enzymes are central proteases in the cytosol and nucleus and are involved in removal of abnormal, misfolded or incorrectly assembled proteins, in processing and degradation of transcriptional regulators in stress response and in the processing of protein antigens. This multicatalytic proteinase complex is composed of a catalytic core, 20S proteasome, which have multiple proteolytic activities (trypsin-like, chymotrypsin-like, peptidylglutamtyl-peptide hydrolyzing, BrAAP and SNAAP). The 20S proteasome associates with the multisubunit complex 19S to produce the 26S proteasome. The 26S proteasome has specificity for ubiquitinylated protein substrates and hydrolyses ATP during proteolysis of ubiquitinylated proteins. In the present work we have purified a 20S form of proteasome from Leishmania chagasi and partially characterized it. The purified 20S proteasome has activity towards fluorogenic substrates that are cleaved by trypsin or chymotrypsin, and is sensitive to lactacystin, a specific inhibitor of the proteasome. We show that the L.chagasi proteasome the trypsin-like activity is higher than the chymotrypsin-like. Therefore the chymotrypsin-like activity is inhibited by lactacystin and the trypsin-like it is only partially inhibited. We show here that lactacystin blocks in vitro L chagasi promastigote replication at a final concentration of 50 µM. To evaluate the effect of proteasome inhibition on the infectivity and intracellular development of L. chagasi, murine macropages were challenged with promastigotes from early stationary phase treated with lactacystin. Infectivity of macrophages was the same in lactacystin-treated parasites as in the untreated ones. Contrarywise, the intracellular development of the parasite is impaired by pretreating promastigotes with lactacystin. These promastigotes were able to infect BALB/c peritoneal macrophages but they did not survive inside macrophages. These data indicate the important role of the proteasomes of L. chagasi promastigotes on the intracellular development and replication in host cells in vitro.
3

Papel dos proteassomas na interação e desenvolvimento de Leishmania chagasi em macrófagos murinos. / Role of parasite proteasomes in the infectivity and intracellular development of Leishmania chagasi in murine macrophages.

Izaltina Silva Jardim 30 March 2001 (has links)
Nas células eucariotas a maioria das proteínas citoplasmáticas não são degradadas nos lisossomas, mas em organelas altamente conservadas encontradas em humanos, arquibactérias, plantas e leveduras, os proteassomas. Esta estrutura multicatalítica é constituída por componentes menores, cujo núcleo funcional é o componente 20S, que contém várias atividades proteolíticas (tríptica, quimotríptica, de peptidilglutamil peptidase, BrAAP e SNAAP). Esse componente 20S, associado ao complexo regulatório 19S, que é composto de múltiplas ATPases, forma o complexo 26S, responsável pela degradação de proteínas conjugadas com a ubiquitina. Estas estruturas citosólicas certamente desempenham papel importante no desenvolvimento de protozoários parasitas e na sua interação com células dos hospedeiros permissivos. Nesta dissertação, apresentamos um estudo sobre o papel do proteassoma na interação e desenvolvimento de promastigotas de Leishmania chagasi em macrófagos murinos. Inicialmente, purificamos e caracterizamos parcialmente o proteassoma de promastigotas de L. chagasi. Observamos que o complexo presente na L. chagasi possui atividades proteolíticas frente a pelo menos dois substratos sintéticos, LLVY-AMC e LRR-AMC, que avaliam, respectivamente, as atividades quimiotripsina-símile e tripsina-símile. A atividade tripsina-simile é maior que a atividade quimiotripsina-simile; e além disso, esta última é totalmente inibida pela lactacistina, um inibidor específico do proteassoma, enquanto a atividade tripsina-simile é apenas parcialmente inibida. Utilizando a lactacistina foi possível analisar o papel desse complexo proteolítico durante a infecção e desenvolvimento intracelular da L. chagasi. Promastigotas mantidas em cultura na presença de 50μM de lactacistina tiveram seu crescimento bloqueado. Essas promastigotas eram capazes de infectar macrófagos peritoneais de camundongos BALB/c, mas não conseguiam sobreviver dentro desses macrófagos. Esta incapacidade de sobrevivência foi específica para os parasitas tratados com a lactacistina, não sendo observado nos parasitas tratados com outros inibidores de proteases. Estes resultados sugerem que o proteassoma pode ter um papel importante no desenvolvimento intracelular e na replicação das promastigotas de L. chagasi no hospedeiro vertebrado. / Proteasomes are multicatalitic and multisubunit endopeptidase complexes widely distributed in eukaryotic cells. These enzymes are central proteases in the cytosol and nucleus and are involved in removal of abnormal, misfolded or incorrectly assembled proteins, in processing and degradation of transcriptional regulators in stress response and in the processing of protein antigens. This multicatalytic proteinase complex is composed of a catalytic core, 20S proteasome, which have multiple proteolytic activities (trypsin-like, chymotrypsin-like, peptidylglutamtyl-peptide hydrolyzing, BrAAP and SNAAP). The 20S proteasome associates with the multisubunit complex 19S to produce the 26S proteasome. The 26S proteasome has specificity for ubiquitinylated protein substrates and hydrolyses ATP during proteolysis of ubiquitinylated proteins. In the present work we have purified a 20S form of proteasome from Leishmania chagasi and partially characterized it. The purified 20S proteasome has activity towards fluorogenic substrates that are cleaved by trypsin or chymotrypsin, and is sensitive to lactacystin, a specific inhibitor of the proteasome. We show that the L.chagasi proteasome the trypsin-like activity is higher than the chymotrypsin-like. Therefore the chymotrypsin-like activity is inhibited by lactacystin and the trypsin-like it is only partially inhibited. We show here that lactacystin blocks in vitro L chagasi promastigote replication at a final concentration of 50 µM. To evaluate the effect of proteasome inhibition on the infectivity and intracellular development of L. chagasi, murine macropages were challenged with promastigotes from early stationary phase treated with lactacystin. Infectivity of macrophages was the same in lactacystin-treated parasites as in the untreated ones. Contrarywise, the intracellular development of the parasite is impaired by pretreating promastigotes with lactacystin. These promastigotes were able to infect BALB/c peritoneal macrophages but they did not survive inside macrophages. These data indicate the important role of the proteasomes of L. chagasi promastigotes on the intracellular development and replication in host cells in vitro.
4

Antileishmanial activity of cryptolepine analogues and apoptotic effects of 2,7-dibromocryptolepine against Leishmania donovani promastigotes.

Hazra, S., Ghosh, S., Debnath, S., Seville, Scott, Prajapati, V.K., Wright, Colin W., Sundar, S., Hazra, B. January 2012 (has links)
no / Cryptolepine (5-methyl-10H-indolo [3, 2-b] quinoline), an indoloquinoline alkaloid (1) isolated from a medicinal plant traditionally used in Western Africa for treatment of malaria, has been shown to possess broad spectrum biological activity in addition to its antiplasmodial effect. Here, the antileishmanial properties of 11 synthetic derivatives of cryptolepine against Leishmania donovani parasites have been evaluated for the first time. 2,7-Dibromocryptolepine (8; IC50 0.5 ± 0.1 μM) was found to be the most active analogue against the promastigote form of a classical L. donovani strain (AG83) in comparison to the natural alkaloid, cryptolepine (1; IC50 1.6 ± 0.1 μM). Further, 8 was found to substantially inhibit the intracellular amastigote forms of two clinical isolates, one of them being an SbV-resistant strain of L. donovani. Moreover, the toxicity of 8 against normal mouse peritoneal macrophage cells was markedly lower than that of 1 (IC50 values: 9.0 ± 1.2 and 1.1 ± 0.3 μM, respectively), indicating 8 to be a prospective “lead” towards novel antileishmanial therapy. This was supported by studies on the mechanism of cytotoxicity induced by 8 in L. donovani promastigotes (AG83), which revealed the cytoplasmic and nuclear features of metazoan apoptosis. Light microscopic observation demonstrated a gradual decline in the motility, cell volume, and survival of the treated parasites with increasing incubation time. Flow cytometric analysis of phosphatidylserine externalization and distribution of cells in different phases of cell cycle confirmed the presence of a substantial percentage of cells in early apoptotic stage. Disruption of mitochondrial membrane integrity in terms of depolarization of membrane potential, and finally degradation of chromosomal DNA into oligonucleosomal fragments—the hallmark event of apoptosis—characterized the mode of cell death in L. donovani promastigotes.
5

Cryptolepine-Induced Cell Death of Leishmania donovani Promastigotes Is Augmented by Inhibition of Autophagy.

Sengupta, S., Chowdhury, S., BoseDasgupta, S., Wright, Colin W., Majumder, H.K. January 2011 (has links)
no / Leishmania donovani are the causative agents of visceral leishmaniasis worldwide. Lack of vaccines and emergence of drug resistance warrants the need for improved drug therapy and newer therapeutic intervention strategies against leishmaniasis. In the present study, we have investigated the effect of the natural indoloquinoline alkaloid cryptolepine on L. donovani AG83 promastigotes. Our results show that cryptolepine induces cellular dysfunction in L. donovani promastigotes, which leads to the death of this unicellular parasite. Interestingly, our study suggest that cryptolepine-induced cell death of L. donovani is counteracted by initial autophagic features elicited by the cells. For the first time, we show that autophagy serves as a survival mechanism in response to cryptolepine treatment in L. donovani promastigotes and inhibition of autophagy causes an early increase in the amount of cell death. This study can be exploited for designing better drugs and better therapeutic strategies against leishmaniasis in future.
6

Studies Aimed at the Synthesis of Anti-Infective Agents

Kanwar, Ankush 20 April 2018 (has links)
Infectious diseases continue to be a major concern worldwide. They are the second leading cause of death after heart disease. Factors such as an increasing global population, travel, urbanization, global climate change and evolution of pathogens have made infectious diseases more common. Infectious diseases, particularly neglected tropical diseases (NTDs) result in many deaths worldwide. Malaria and leishmaniasis are two common (NTDs) which affect low income countries around the globe. Low cost drugs with novel mechanism of action are required to tackle the growing resistances of parasites against current drugs used in the developing world, where most of the cases occur. The first part of this manuscript (chapters 1 - 3) describes the synthesis of novel analogs active against Leishmania donovani parasite which causes leishmaniasis. Leishmaniasis is a vector-borne complex group of diseases transmitted through the bite of an infected female sand-fly. Its clinical manifestations range from the less severe (cutaneous) to fatal (visceral) forms depending upon infecting species, immunity of host and the environment. Reports have suggested the role of Heat shock protein 90 (Hsp 90) in the differentiation of the Leishmania parasite from the promastigote stage to the pathogenic amastigote stage inside the host. A series of tetrahydro-indazole, tetrahydro-pyrazolo pyridine and radicicol hybrid compounds were prepared based on known Hsp 90 inhibitors, SNX2112 and NVP-AUY922. The synthetic approach allowed us to generate a diverse library of analogs which were used to probe the hydrophobic pocket of Hsp 90 active site. The most active compound, was found to be twice more active as the clinically used drug, Miltefosine, in an infected macrophage assay with an IC50 = 0.88 µM. The second part of this manuscript (chapters 4 - 5) describes the synthesis of xanthurenic acid analogs as antimalarial drugs. Xanthurenic acid (XA) is a vital component for the gametogenesis of the Plasmodium inside the mosquito’s gut. Gametogenesis plays an important part in the continuation of the parasite’s life cycle. A series of xanthurenic acid analogs were synthesized with the aim of inducing premature exflagellation of the microgametes, thus blocking the key step required for the transmission of parasites from humans to the mosquito. A biotinylated xanthurenic acid analog and a clickable xanthurenic acid analog were also synthesized which will help us investigate the mechanism of action of xanthurenic acid in inducing gametogenesis in mosquito. In the preliminary screening efforts in an exflagellation assay, analog 4.40 showed promising activity and was more active in inducing exflagellation than xanthurenic acid. An exflagellation assay of other analogs is currently being pursued. Further investigations into the molecular target and mechanism of action are underway with the biotinylated xanthurenic acid analog.
7

Synthesis of Novel Agents for the treatment of Infectious and Neurodegenerative diseases

Eduful, Benjamin Joe 02 April 2018 (has links)
Infectious and neurodegenerative diseases continue to be a major concern worldwide. In spite of the great advances in drug therapy for treating various infectious and neurodegenerative diseases, there is still an urgent need for new and improved drugs due to increasing drug resistance among pathogens, emergence of new pathogens, ease of transmission of infections, ineffective available treatments, toxicity associated with current standard of care, aging populations and the lack of better alternative treatment options. The first part of this manuscript (chapters 1 - 5) describes the synthesis of novel agents active against Leishmania donovani. According to the World Health Organization (WHO), a significant number of deaths worldwide can be attributed to infectious diseases – particularly neglected tropical diseases (NTDs), one of which is leishmaniasis - a complex and clinically diverse disease transmitted through the bite of an infected female phlebotomine sand-fly. The pathogen that causes leishmaniasis develops through a complex life cycle via different morphological changes. Its clinical presentations range from the less severe (cutaneous) to lethal/fatal (visceral) forms depending upon the level of systemic involvement, infecting species and the endemic environment. Treatments (and vaccines) must be species-specific to be particularly effective since sensitivity to commonly used drugs is largely species-specific. Heat shock protein 90 (Hsp 90) has been shown to promote the differentiation of the protozoan parasite that causes leishmaniasis from the promastigote stage to the amastigote pathogenic stages. To this end a series of compounds were prepared based on known Hsp 90 inhibitors, SNX2112 and XL888. The synthetic approach allows the probing of a hydrophobic pocket and rapid access to a collection of anti-leishmanial compounds. The most active compound, was found to be more than twice as active as the climivally used drug, miltefosine, in an infected J774 macrophage at IC50 = 0.65 µM. The second part of this manuscript (chapters 6 - 9) describes the synthesis novel anti-Alzheimer’s agents. Alzheimer’s disease is a progressive neurodegenerative disease believed to be caused by tau hyperphosphorylation and plaque aggregation in the brain. It is known to affect about 44 million people worldwide and it is marked as the 6th leading cause of death in the United States. Slingshot homology-1 (SSH1) proteins, important protein phosphatases, are promising targets for the discovery of a new generation of small molecule inhibitors as treatment for Alzheimer’s disease, since SSH1 is known to contribute to both tau hyperphosphorylation and plaque aggregation in the brain. Through structure and activity relationships (SAR) studies, two (2) series of compounds were synthesized, thiazoles and pyridones, bearing a carboxylic acid or phosphonic acid functionality as inhibitors of SSH1 enzymes. In the preliminary screening efforts against SSH1 phosphatase activity, the thiazole series were found to be more potent at inhibiting the phosphatase activity than the pyridone series. Among the active thiazole series, eight (8) analogs exhibited significant inhibitory activity over the initial hit compound, observed via phosphatase inhibition curves (using a pNPP phosphatase assay). Further investigations into the molecular target (SSH1) are currently underway.

Page generated in 0.0611 seconds