• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 46
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A study of secondary three students' proof writing in geometry

Lai, Lan-chee, Nancy., 黎蘭芝. January 1995 (has links)
published_or_final_version / Education / Master / Master of Education
72

Proof, rigour and informality : a virtue account of mathematical knowledge

Tanswell, Fenner Stanley January 2017 (has links)
This thesis is about the nature of proofs in mathematics as it is practiced, contrasting the informal proofs found in practice with formal proofs in formal systems. In the first chapter I present a new argument against the Formalist-Reductionist view that informal proofs are justified as rigorous and correct by corresponding to formal counterparts. The second chapter builds on this to reject arguments from Gödel's paradox and incompleteness theorems to the claim that mathematics is inherently inconsistent, basing my objections on the complexities of the process of formalisation. Chapter 3 looks into the relationship between proofs and the development of the mathematical concepts that feature in them. I deploy Waismann's notion of open texture in the case of mathematical concepts, and discuss both Lakatos and Kneebone's dialectical philosophies of mathematics. I then argue that we can apply work from conceptual engineering to the relationship between formal and informal mathematics. The fourth chapter argues for the importance of mathematical knowledge-how and emphasises the primary role of the activity of proving in securing mathematical knowledge. In the final chapter I develop an account of mathematical knowledge based on virtue epistemology, which I argue provides a better view of proofs and mathematical rigour.
73

Aplicação de verificação formal em um sistema de segurança veicular / Application of formal verification in a vehicular safety system

Silva, Nayara de Souza 07 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-04-11T19:28:47Z No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-12T14:32:03Z (GMT) No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-12T14:32:03Z (GMT). No. of bitstreams: 2 Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-07 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / The process of developing computer systems takes into account many stages, in which some are more necessary than others, depending on the purpose of the application. The implementation stage is always necessary, indisputably. Sometimes the requirements analysis and testing phases are neglected. And, generally, the part of formal verification correctness is intended for few applications. The use of model checkers has been exploited in the task of validating a behavioral specification in its appropriate level of abstraction, notably specifications validation of critical systems, especially when they involve the preservation of human life, when the existence of errors entails huge financial loss or when deals with information security. Therefore, it proposes to apply formal verification techniques in the validation of the vehicular safety system Avoiding Doored System, considered as critical, in order to verify if the implemented system faithfully meets the requirements for it proposed. For that, it was used as a tool to verify its correctness the Specification and Verification System - PVS, detailing and documenting all the steps employed in the process of specification and formal verification. K / O processo de desenvolvimento de sistemas computacionais leva em conta muitas etapas, nos quais umas são tidas mais necessárias que outras, dependendo da finalidade da aplica- ção. A etapa de implementação sempre é necessária, indiscutivelmente. Por vezes as fases de análise de requisitos e de testes são negligenciadas. E, geralmente, a parte de verifica- ção formal de corretude é destinada a poucas aplicações. O uso de verificadores de modelos tem sido explorado na tarefa de validar uma especificação comportamental no seu nível adequado de abstração, sobretudo, na validação de especificações de sistemas críticos, principalmente quando estes envolvem a preservação da vida humana, quando a existência de erros acarreta enorme prejuízo financeiro ou quando tratam com a segurança da informa- ção. Diante disso, se propõe aplicar técnicas de verificação formal na validação do sistema de segurança veicular Avoiding Doored System, tido como crítico, com o intuito de atestar se o sistema implementado atende, fielmente, os requisitos para ele propostos. Para tal, foi utilizada como ferramenta para a verificação de sua corretude o Specification and Verification System - PVS, detalhando e documentando todas as etapas empregadas no processo de especificação e verificação formal. Pal
74

Monotone Modal Logic and Friends

Frittella, Sabine 01 December 2014 (has links)
Cette thèse étudie la théorie de la correspondance et la théorie des preuves pour la logique modale monotone et les logiques qui en sont proches.La première partie de la thèse établit une connexion formelle entre la théorie de la correspondance algorithmique et des résultats de caractérisation duale pour les treillis finis, similaire à la caractérisation par Nation d'une hiérarchie de variétés de treillis qui généralise les treillis distributifs. Cette connexion formelle est établie en utilisant la logique modale monotone. Nous adaptons l'algorithme ALBA pour la correspondance à l'environnement de la logique modale monotone, et nous utilisons un encodage, induit par une dualité, des treillis finis sous forme de 'neighbourhood frames' pour traduire les termes de la théorie des treillis en formules de la logic modal monotone.La deuxième partie de la thèse étend la théorie des 'display calculi' à la logique Baltag-Moss-Solecki pour les actions épistémiques et la connaissance (Epistemic Actions and Knowledge), à la logique modale monotone et à la logique propositionnelle dynamique (PDL). Nos résultats incluent plusieurs méta-théorèmes d'élimination de la coupure qui généralisent le théorème original de Belnap dans des dimensions différentes et indépendantes. Les deux principales généralisations des 'display calculi' traitées dans la thèse sont : la généralisation d'une théorie pour les langages ne contenant qu'un seul type à une théorie pour les langages contenant plusieurs types, et la généralisation d'une théorie pour les calculs satisfaisant la propriété de 'display' aux calculs ne la satisfaisant pas. / The present thesis focuses on Monotone Modal Logic and closely related logics from the point of view of Correspondence Theory and Proof Theory.The first part of the thesis establishes a formal connection between algorithmic corre- spondence theory and certain dual characterization results for finite lattices, similar to Nation's characterization of a hierarchy of pseudovarieties of finite lattices progressively generalizing finite distributive lattices. This formal connection is established through monotone modal logic. Specifically, we adapt the correspondence algorithm ALBA to the setting of monotone modal logic, and we use a certain duality-induced encoding of finite lattices as monotone neighbourhood frames to translate lattice terms into formulas in monotone modal logic.The second part of the thesis extends the theory of display calculi to Baltag-Moss- Solecki's logic of Epistemic Actions and Knowledge (EAK), Monotone Modal Logic (MML), and Propositional Dynamic Logic (PDL). Our results include several cut-elimination metatheorems, which generalize the original metatheorem of Belnap in different and mutually independent dimensions. The two main generalizations of display calculi treated in the thesis are: the generalization from single type to multi-type languages, and from the full or relativized display property to no display property.
75

Sur les épreuves et les types dans la logique du second ordre / On proofs and types in second order logic

Pistone, Paolo 27 March 2015 (has links)
Dans cette thèse on s'intéresse aux formes de "circularité" qui apparaissent dans la théorie de la preuve de la logique du second ordre et de son contrepartie constructive, le Système F.Ces "circularités", ou "cercles vicieux" (Poincaré 1900), sont analysées sur la base d'une distinction entre deux points de vue distincts et irréductible (à cause des théorèmes d'incomplétude): le premier ("le pourquoi", Girard 1989) concerne la cohérence et l'Hauptsatz et demande des méthodes infinitaires (i.e. non élémentaires) de preuve. Le deuxième ("le comment", Girard 1989) concerne le contenu computationnel et combinatoire des preuves, donné par la correspondance entre preuves et programmes, et ne demande que de méthodes élémentaires de preuve.Dans la première partie de la thèse, dévouée au "pourquoi", les arguments philosophiques traditionnels sur les "cercles vicieux" sont confrontés avec la perspective qui émerge de la démonstration de l' Hauptsatz pour la logique de second ordre (obtenue par Girard avec la technique des candidats de réductibilité).Dans la deuxième partie de la thèse, dévouée au "comment", deux approches combinatoires aux cercles vicieux sont proposés: la première se basant sur la théorie du polymorphisme paramétrique, la deuxième sur l'analyse géométrique du typage qui vient de la théorie de l'unification. / In this dissertation several issues concerning the proof-theory of second order logic and its constructive counterpart (System F, Girard 1971) are addressed. The leitmotiv of the investigations here presented is the apparent "circularity'' or "impredicativity'' of second order proofs. This circularity is reflected in System F by the possibility to type functions applied to themselves, in contrast with Russell's idea that typing should rather forbid such ``vicious circles'' (Poincare 1906). A fundamental methodological distinction between two irreducible (because of incompleteness) approaches in proof theory constitutes the background of this work: on the one hand, "why-proof theory'' ("le pourquoi'', Girard 1989) addresses coherence and the Hauptsatz and requires non-elementary ("infinitary'') techniques; on the other hand, "how-proof theory'' ("le comment'', Girard 1989) addresses the combinatorial and computational content of proofs, given by the correspondence between proofs and programs, and is developed on the basis of elementary ("finitary'') techniques. }In the first part of the thesis, dedicated to "why-proof theory'', the traditional philosophical arguments on "vicious circles'' are confronted with the perspective arising from the proof of the Hauptsatz for second order logic (first obtained in Girard 1971 with the technique of reducibility candidates).In the second part of the thesis, dedicated to "how-proof theory'', two combinatorial approaches to "vicious circles'' are presented, with some technical results: the first one based on the theory of parametric polymorphism, the second one on the geometrical analysis of typing coming from unification theory.
76

Extending higher-order logic with predicate subtyping : application to PVS / Extension de la logique d'ordre supérieur avec le sous-typage par prédicats : application à PVS

Gilbert, Frédéric 10 April 2018 (has links)
Le système de types de la logique d'ordre supérieur permet d'exclure certaines expressions indésirables telles que l'application d'un prédicat à lui-même. Cependant, il ne suffit pas pour vérifier des critères plus complexes comme l'absence de divisions par zéro. Cette thèse est consacrée à l’étude d’une extension de la logique d’ordre supérieur appelée sous-typage par prédicats (predicate subtyping), dont l'objet est de rendre l'attribution de types aussi expressive que l'attribution de prédicats. A partir d'un type A et d'un prédicat P(x) de domaine A, le sous-typage par prédicats permet de construire un sous-type de A, noté {x : A | P(x)}, dont les éléments sont les termes t de type A tels que P(t) est démontrable. Le sous-typage par prédicats est au coeur du système PVS.Ce travail présente la formalisation d'un système minimal incluant le sous-typage par prédicats, appelé PVS-Core, ainsi qu'un système de certificats vérifiables pour PVS-Core. Ce deuxième système, appelé PVS-Cert, repose sur l'introduction de termes de preuves et de coercions explicites. PVS-Core et PVS-Cert sont munis d'une notion de conversion correspondant respectivement à l'égalité modulo beta et à l'égalité modulo beta et effacement des coercions, choisi pour établir une correspondance simple entre les deux systèmes.La construction de PVS-Cert est semblable à celle des PTS (Pure Type Systems) avec paires dépendantes et PVS-Cert peut être muni de la notion de beta-sigma-réduction utilisée au coeur de ces systèmes. L'un des principaux théorèmes démontré dans ce travail est la normalisation forte de la réduction sous-jacente à la conversion et de la beta-sigma-réduction. Ce théorème permet d'une part de construire un algorithme de vérification du typage (et des preuves) pour PVS-Cert et d'autre part de démontrer un résultat d'élimination des coupures, utilisé à son tour pour prouver plusieurs propriétés importantes des deux systèmes étudiés. Par ailleurs, il est également démontré que PVS-Cert est une extension conservative du PTS lambda-HOL, et qu'en conséquence PVS-Core est une extension conservative de la logique d'ordre supérieur.Une deuxième partie présente le prototype d'une instrumentation de PVS pour produire des certificats de preuve. Une troisième et dernière partie est consacrée à l'étude de liens entre logique classique et constructive avec la définition d'une traduction par double négation minimale ainsi que la présentation d'un algorithme de constructivisation automatique des preuves. / The type system of higher-order logic allows to exclude some unexpected expressions such as the application of a predicate to itself. However, it is not sufficient to verify more complex criteria such as the absence of divisions by zero. This thesis is dedicated to the study of an extension of higher-order logic, named predicate subtyping, whose purpose is to make the assignment of types as expressive as the assignment of predicates. Starting from a type A and a predicate P(x) of domain A, predicate subtyping allows to build a subtype of A, denoted {x : A | P(x)}, whose elements are the terms t of type A such that P(t) is provable. Predicate subtyping is at the heart of the proof system PVS.This work presents the formalization of a minimal system expressing predicate subtyping, named PVS-Core, as well as a system of verifiable certificates for PVS-Core. This second system, named PVS-Cert, is based on the introduction of proof terms and explicit coercions. PVS-Core and PVS-Cert are equipped with a notion of conversion corresponding respectively to equality modulo beta and to equality modulo beta and the erasure of coercions, chosen to establish a simple correspondence between the two systems.The construction of PVS-Cert is similar to that of PTSs (Pure Type Systems) with dependent pairs and PVS-Cert can be equipped with the notion of beta-sigma-reduction used at the core of these systems. One of the main theorems proved in this work is the strong normalization of both the reduction underlying the conversion and beta-sigma-reduction. This theorem allows, on the one hand, to build a type-checking (and proof-checking) algorithm for PVS-Cert and, on the other hand, to prove a cut elimination result, used in turn to prove important properties of the two studied systems. Furthermore, it is also proved that PVS-Cert is a conservative extension of the PTS lambda-HOL and that, as a consequence, PVS-Core is a conservative extension of higher-order logic.A second part presents the prototype of an instrumentation of PVS to generate proof certificates. A third and final part is dedicated to the study of links between classical and constructive logic, with the definition of a minimal double-negation translation as well as the presentation of an automated proof constructivization algorithm.
77

Nondeterminism and Language Design in Deep Inference

Kahramanogullari, Ozan 21 December 2006 (has links)
This thesis studies the design of deep-inference deductive systems. In the systems with deep inference, in contrast to traditional proof-theoretic systems, inference rules can be applied at any depth inside logical expressions. Deep applicability of inference rules provides a rich combinatorial analysis of proofs. Deep inference also makes it possible to design deductive systems that are tailored for computer science applications and otherwise provably not expressible. By applying the inference rules deeply, logical expressions can be manipulated starting from their sub-expressions. This way, we can simulate analytic proofs in traditional deductive formalisms. Furthermore, we can also construct much shorter analytic proofs than in these other formalisms. However, deep applicability of inference rules causes much greater nondeterminism in proof construction. This thesis attacks the problem of dealing with nondeterminism in proof search while preserving the shorter proofs that are available thanks to deep inference. By redesigning the deep inference deductive systems, some redundant applications of the inference rules are prevented. By introducing a new technique which reduces nondeterminism, it becomes possible to obtain a more immediate access to shorter proofs, without breaking certain proof theoretical properties such as cutelimination. Different implementations presented in this thesis allow to perform experiments on the techniques that we developed and observe the performance improvements. Within a computation-as-proof-search perspective, we use deepinference deductive systems to develop a common proof-theoretic language to the two fields of planning and concurrency.
78

From the Outside Looking In: Can mathematical certainty be secured without being mathematically certain that it has been?

Souba, Matthew January 2019 (has links)
No description available.
79

Deep Inference and Symmetry in Classical Proofs

Brünnler, Kai 22 September 2003 (has links)
In this thesis we see deductive systems for classical propositional and predicate logic which use deep inference, i.e. inference rules apply arbitrarily deep inside formulas, and a certain symmetry, which provides an involution on derivations. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they enjoy various new interesting properties. Not only the identity axiom, but also cut, weakening and even contraction are reducible to atomic form. This leads to inference rules that are local, meaning that the effort of applying them is bounded, and finitary, meaning that, given a conclusion, there is only a finite number of premises to choose from. The systems also enjoy new normal forms for derivations and, in the propositional case, a cut elimination procedure that is drastically simpler than the ones for sequent systems.
80

A topological approach to nonlinear analysis

Peske, Wendy Ann 01 January 2005 (has links)
A topological approach to nonlinear analysis allows for strikingly beautiful proofs and simplified calculations. This topological approach employs many of the ideas of continuous topology, including convergence, compactness, metrization, complete metric spaces, uniform spaces and function spaces. This thesis illustrates using the topological approach in proving the Cauchy-Peano Existence theorem. The topological proof utilizes the ideas of complete metric spaces, Ascoli-Arzela theorem, topological properties in Euclidean n-space and normed linear spaces, and the extension of Brouwer's fixed point theorem to Schauder's fixed point theorem, and Picard's theorem.

Page generated in 0.0434 seconds