• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 26
  • 21
  • 17
  • 17
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural studies of protein phosphatase 2A, simian virus 40 small t antigen, and the PhoQ sensor domain /

Cho, Uhn-Soo. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Includes bibliographical references (leaves 124-143).
22

Etudes moléculaires et fonctionnelles de deux régulateurs de la protéine phosphatase de type 1 chez Plasmodium falciparum : I2 et eIF2ß / Molecular and functional studies of two regulators of the phosphatase protein type 1 in Plasmodium falciparum : I2 and eIF2ß

Tellier, Géraldine 30 September 2015 (has links)
La malaria est la 1ère parasitose mondiale du fait de son taux de morbidité et de mortalité. Elle est responsable de 198 millions de cas dont 584 000 décès en 2013 (OMS). La forme la plus sévère est due à l’apicomplexe Plasmodium falciparum. Etant donné l’absence d’un vaccin efficace et l’augmentation des résistances aux traitements, il est crucial d’approfondir nos connaissances sur la biologie de P. falciparum afin de trouver de nouvelles cibles thérapeutiques. Le cycle de vie complexe avec deux hôtes nécessite une régulation précise et dynamique de l’expression des gènes et des modifications post-traductionnelles. Dans ce contexte, il a été montré que les kinases et les phosphatases, impliquées dans les processus de phosphorylation et de déphosphorylation respectivement, jouent un rôle crucial pour la survie du parasite. Chez les eucaryotes, les phosphatases sont impliquées dans la croissance cellulaire, la différentiation et la division. Parmi elles, PP1, une des principales sérine/thréonine phosphatases, est composée d’une sous-unité catalytique (PP1c) et d’une sous-unité régulatrice. Ces régulateurs sont essentiels et confère à PP1 une localisation, une spécificité et une régulation de son activité. La majorité des régulateurs interagissent avec PP1c via différents motifs tel que le motif RVxF. Chez P. falciparum, PP1 (PfPP1c) est exprimée et semble être essentielle au niveau du stade érythrocytaire, en particulier dans la libération des mérozoïtes infectieux. Pour mieux comprendre la fonction de PfPP1c, nous étudions les régulateurs de PP1 chez le parasite. Nos études précédentes nous ont permis de caractériser 3 régulateurs au niveau moléculaire et fonctionnel. Dans ce contexte, nous avons montré que PfLRR1 et PfI2 inhibent l’activité de PP1 alors que PfI3 l’active. Des études de génétique inverse suggèrent que ces régulateurs sont aussi essentiels que la PP1c elle-même. Récemment, nous avons identifié dans le génome de P. falciparum le facteur d’initiation de la traduction de type 2 sous-unité ß (eIF2ß) qui pourrait être un partenaire/régulateur potentiel de PfPP1. Dans la 1ère partie de cette étude, l’objectif principal a été d’étudier la présence de motifs additionnels de fixation à PfPP1c dans PfI2 et leur impact sur sa fonction. En utilisant la RMN, un troisième motif d’interaction FxxR/KxR/K a été identifié. Ce motif a été montré comme agissant de concert avec le motif canonique RVxF. En effet, la mutation des deux motifs abolie complètement l’interaction avec PfPP1. De plus, en utilisant le modèle d’ovocytes de Xénope, nous avons montré que ces motifs sont nécessaires à PfI2 pour réguler l’activité de PP1. Finalement, l’utilisation d’un peptide dérivé du motif d’interaction FxxR/KxR/K de PfI2 a montré une accumulation dans les érythrocytes infectés et un effet anti-plasmodial a été observé. Dans la 2ème partie de cette étude, nous avons étudié eIF2β, un autre régulateur potentiel de PfPP1. Par des expériences de GST pull-down, nous avons montré l’interaction entre PfeIF2β/PfPP1 et deux motifs d’interaction ont été identifiés : RVxF et FxxR/kxR/K. De plus, en utilisant le modèle d’ovocytes de Xénope, nous avons démontré que PfeIF2ß est impliqué dans la transition G2/M, suggérant un rôle inhibiteur sur l’activité de PP1. La mutation d’un des deux motifs n’empêche pas la formation du complexe alors que la mutation des deux abolie l’interaction avec PP1. Afin de déterminer la fonction de PfeIF2ß in vivo chez Plasmodium, des expériences de génétique inverse ont été réalisées. Nous avons montré l’accessibilité au locus du PfeIF2ß par Knock-in et des expériences d’interruption du gène elf2ß chez Plasmodium falciparum et berghei (espèce spécifique aux rongeurs) sont actuellement en cours afin de déterminer l’essentialité de cette protéine dans le développement du parasite. / Malaria is still the most severe infectious disease in the world because of its high rate of morbidity and mortality. Malaria is responsible for 198 million cases among which 584 000 deaths in 2013 (WHO). The most deadly parasite is the Apicomplexa Plasmodium falciparum. Given the lack of efficient vaccine with long-lasting protection and the increase of resistance against current treatments it is crucial to further deepen our understanding the biology of Plasmodium falciparum to find new means of control. The complex life cycle within two hosts necessitates a highly accurate and dynamic regulation of gene expression and of post translational modifications. In this context, it has been shown that kinases and phosphatases, involved in phosphorylation/dephosphorylation processes respectively, play a key role in parasite survival. In eukaryotes, phosphatases have been shown to be involved in cell growth, differentiation and division. Among them, Protein phosphatase type 1 (PP1) has been reported as one of the major serine/threonine phosphatase proteins involved in diverse cellular functions. PP1 is composed of a single catalytic subunit (PP1c) with a capacity to interact with a high number of regulatory subunits. These regulators are essential as they are key players in different roles of PP1c, including its trafficking, activity and specificity. Most of regulators interact with PP1c via several binding motifs including the RVXF motif. In Plasmodium falciparum, PP1c (PfPP1c) is expressed and seems to be essential for blood stage parasite, in particular merozoïte liberation. To better understand the function of PfPP1c, we investigated the regulators of protein phosphatase type I in this parasite. Our earlier studies have characterized three regulators at the molecular and functional levels. In this context, we have shown that PfLRR1 and PfI2 inhibit PP1 activity while PfI3 activates it. Reverse genetic studies suggested that these regulators are as essential as the PP1c itself. Recently, we found in P. falciparum genome the eukaryotic translation initiation factor 2 subunit ß (eIF2ß) which could be a potential partner/regulator of PfPP1. In the first part of this study, the main objective was to further explore in PfI2 the presence of additional motifs of binding to PfPP1c and their impacts on its function. Using NMR spectroscopy, a third motif was identified: FxxR/KxR/K. This motif has been found to act together with the canonical motif RVxF. Indeed, mutations in both motifs abolished completely the interaction with PfPP1. In addition, using Xenopus oocytes model, we showed that both motifs were necessary for PfI2 to regulate the activity of PP1. Finally the use of a peptide spanning the FxxR/KxR/K motif of PfI2 regulator showed an accumulation in infected erythrocytes and an antiplasmodial effect was observed.In the second part, we investigated eIF2ß as a potential regulator of PfPP1. By GST pull-down assays, we have shown the interaction between PfeIF2ß/PfPP1 and two binding motifs were identified : RVxF and FxxR/KxR/K motifs. Moreover, using Xenopus oocytes model, we demonstrated that PfeIF2ß is involved in G2/M transition, suggesting an inhibitor function of PP1 activity. Mutation of one of two motifs did not prevent the interaction while mutation of both abolished this binding. To gain more insights on the function of PfeIF2ß in Plasmodium, reverse genetic experiments were carried out. We have shown the accessibility of PfeIF2ß locus by Knock-in and we are performing Knock-out experiments on Plasmodium falciparum and berghei (specific species of the rodents) to determine the essentiality of this protein for parasite development.
23

Role of Protein phosphatase V in Cell Cycle Control

Liu, Boyang 30 September 2016 (has links)
No description available.
24

The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation

Machado, Luciana E. S. F., Shen, Tun-Li, Page, Rebecca, Peti, Wolfgang 26 May 2017 (has links)
The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H2O2, which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H2O2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening.
25

A importância da proteína fosfatase sitA na adesão, integridade da parede celular, biofilme e virulência de Aspergillus fumigatus / The Aspergillus fumigatus sitA phosphatase homologue is important for adhesion, cell wall integrity, biofilm formation, and virulence

Vinícius Leite Pedro Bom 12 February 2016 (has links)
Aspergillus fumigatus é um fungo patogênico oportunista capaz de infectar pacientes imunocomprometidos causando eventualmente infecções disseminadas difíceis de serem controladas e com alta taxa de mortalidade dos indivíduos infectados.. Para um melhor entendimento de como esse fungo age no hospedeiro é importante saber como as vias de sinalização que regulam esses fatores de virulência são orquestradas. Proteínas fosfatases são centrais em uma grande variedade de vias de transdução de sinal. Neste trabalho, nós caracterizamos a proteína fosfatase 2A SitA, a proteína homóloga de Sit4 em Saccharomyces serevisiae. O gene sitA não é essencial e por isso fomos capazes de construir um mutante nulo em A. fumigatus. A cepa ?sitA apresenta aumento na fosforilação da MpkA, é mais sensível à agentes que causam dano na parede celular, tem um aumento na quantidade de ?-1,3 glicano e quitina, e também tem problemas na adesão e formação de biofilme. O mutante ?sitA é mais sensível a vários metais e íons, como MnCl2, CaCl2, LiCl, entretanto é mais resistente à ZnSO4. O mutante ?sitA é avirulento em modelo de aspergilose pulmonar invasiva em camundongos. Esses resultados revelam que a fosfatase SitA está envolvida na via de integridade da parede celular de A. fumigatus possivelmente modulando a atividade de PkcA/MpkA / Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients causing eventually disseminated infections that are difficult to be controlled, and lead to high mortality rates. It is important to understand how are orchestrated the signalling pathways that regulate these factors involved in virulence. Protein phosphatases are central to numerous signal transduction pathways. Here we characterize A. fumigatus protein phosphatase 2A SitA, the S. cerevisiae Sit4p homologue. The sitA gene is not an essential gene and we were able to construct an A. fumigatus null mutant. The ?sitA strain had increased MpkA phosphorylation, was more sensitive to cell wall damaging agents, had increased ??1,3?glican and chitin, and was impaired in biofilm formation. The ?sitA strain is more sensitive to several metals and ions such as MnCl2, CaCl2, and LiCl, however, it is more resistant to ZnSO4. The ?sitA strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway
26

Protein Phosphatase 1 Abrogates IRF7-Mediated Type I IFN Response In Antiviral Immunity

Wang, Ling, Zhao, Juan, Ren, Junping, Hall, Kenton H., Moorman, Jonathan P., Yao, Zhi Q., Ning, Shunbin 01 May 2016 (has links)
Interferon (IFN) regulatory factor 7 (IRF7) plays a key role in the production of IFN‐α in response to viral infection, and phosphorylation at IRF7 C‐terminal serine sites is prelude to its function. However, phosphatases that negatively regulate IRF7 phosphorylation and activity have not been reported. In this study, we have identified a conserved protein phosphatase 1 (PP1)‐binding motif in human and mouse IRF7 proteins, and shown that PP1 physically interacts with IRF7. Exogenous expression of PP1 subunits (PP1α, β, or γ) ablates IKKε‐stimulated IRF7 phosphorylation and dramatically attenuates IRF7 transcriptional activity. Inhibition of PP1 activity significantly increases IRF7 phosphorylation and IRF7‐mediated IFN‐α production in response to Newcastle disease virus (NDV) infection or Toll‐like receptor 7 (TLR7) challenge, leading to impaired viral replication. In addition, IFN treatment, TLR challenges and viral infection induce PP1 expression. Our findings disclose for the first time a pivotal role for PP1 in impeding IRF7‐mediated IFN‐α production in host immune responses.
27

Protein Phosphatase 1 Abrogates IRF7-Mediated type I IFN Response in Antiviral Immunity

Wang, Ling, Ning, Shunbin 01 January 2018 (has links)
No description available.
28

A comparative analysis of the cytotoxicity of cyanotoxins using in vitro (cell culture) and in vivo (mouse) assays

Masango, Mxolisi Goodwill 12 May 2008 (has links)
The main objective of this study was the application and comparison of different assays in assessing toxicity of cyanobacterial samples, and also characterizing toxicity of the field samples. Therefore, toxicity of purified microcystin-LR (MC-LR) and cyanobacterial samples collected from the Hartbeespoort (HBP) Dam (winter and summer seasons of 2005/2006) and Kruger National Park (KNP) were investigated and compared using the ELISA, mouse bioassay, catfish primary hepatocytes (in vitro assay) and protein phosphatase inhibition (PPi) assays. During sampling in the summer season at the HBP Dam, the dam surface was covered with a thick-green layer of cyanobacterial scum and a foul smell coming from the water surface was always present. Only blue-green streaks of cyanobacteria covered the dam surface during the winter season. All HBP Dam samples (winter and summer samples) and KNP samples (Nhlanhanzwani Dam, Mpanama Dam and Sunset Dam) were dominated by Microcystis aeruginosa with the exception of Makhohlola Dam samples which were found to have no cyanobacteria. The World Health Organization (WHO) has proposed a guideline value for human use of 1.0 µg/L (0.001 mg/L) for MC-LR, the most common microcystin (MC) variant, in drinking water (WHO 1998), whereas 2 000 Microcystis cells/mL have been recommended as the limit of cyanobacteria in drinking water for animals (DWAF 1996). Cyanotoxin concentrations exceeding the prescribed guideline value were detected in all HBP Dam samples (ELISA results ranging between 3.67 to 86.08 mg/L; PPi results ranging between 2.99 to 54.90 mg/L) and KNP samples (ELISA results ranging between 0.1 to 49.41 mg/L; PPi results ranging between 0.006 to 10.95 mg/L) using both the ELISA and PPi assays. In the current study, a dose of about 175 µg/kg of purified MC-LR was demonstrated to be lethal in male CD-1 SPF mice. The HBP Dam summer samples and Nhlanganzwani Dam samples were the only cyanobacterial samples that resulted in death (acute toxicity) of mice. In order to be able to investigate further the in vivo effects of cyanotoxins, transmission electron microscopy (TEM) was used to complement results obtained from the in vivo assay. Ultrastructural changes of varying degree were observed in livers of mice exposed to both the HBP Dam winter and summer samples. Early stages of hepatocyte to hepatocyte disassociation, slight vesiculation of endoplasmic reticulum (ER) and swollen mitochondria were the most significant ultrastructural changes produced in mouse hepatocyte tissues by the HBP Dam winter samples. The most significant ultrastructural changes produced in mouse hepatocyte tissues by the HBP Dam summer samples were massive hepatic haemorrhage indicated by the appearance of erythrocytes between hepatocytes and the extensive vesiculation of ER. This is the first time that the African sharptooth catfish primary hepatocyte model has been used to assess the hepatotoxicity of purified MC-LR and cyanotoxin-containing water samples. In this study, the toxicity of cyanobacterial samples and purified MC-LR to cause hepatotoxicity in mice was confirmed in vitro using the catfish primary cell line. A comparison among the cyanobacterial samples using EC50 showed the following hepatotoxicity trend in the catfish primary cell line: HBP Dam summer samples > Nhlanganzwani Dam samples > HBP Dam winter samples > Mpanama Dam samples > Sunset Dam samples > Makhohlola Dam samples. The HBP Dam samples were the most hepatotoxic and Makhohlola Dam samples were the least hepatotoxic. The EC50 for purified MC-LR using the catfish primary hepatocytes was about 91 nM. A statistical comparison of the assays used in this study (i.e. ELISA, PPi, mouse test and cytotoxicity [catfish primary hepatocyte] assays) was performed based on the Kappa coefficient (K). An almost perfect agreement (K > 0.80) was observed between the mouse test and cytotoxicity assay; mouse test and ELISA; cytotoxicity assay and ELISA; and ELISA and PPi assay. In conclusion, field samples collected during the summer season were found to have very high levels of toxins and a higher degree of toxicity when compared to the winter samples. The cytotoxicity assay using African sharptooth catfish (Clarias gariepinus) primary hepatocytes has been shown for the first time to produce results similar to those observed when using the mouse bioassay in assessing cyanobacterial toxicity. Therefore, this primary cell line may be used as a potential alternative to the mouse assay in toxicity testing of cyanotoxins. Three KNP dams (Nhlanganzwani Dam, Mpanama Dam and Sunset Dam) investigated in this study were found to contain Microcystis aeruginosa. All four KNP dams (Nhlanganzwani Dam, Mpanama Dam, Makhohlola Dam and Sunset Dam) had cyanotoxin levels above the prescribed guideline value, which is of concern and warrants further investigations to the effects on wildlife in the park. Future studies will include use of High Performance Liquid Chromatography (HPLC) to investigate the toxin profile of the field samples in order to fully describe the different classes/or types of toxins present in the samples. More validation studies that could give a more comprehensive understanding about the sensitivity of the catfish primary cell line for microcystins will also be undertaken. / Dissertation (MSc (Paraclinical Studies))--University of Pretoria, 2007. / Paraclinical Sciences / unrestricted
29

CHARACTERIZATION AND STUDY OF THE PHYSIOLOGICAL ROLE OF CTL0511, A CHLAMYDIAL PROTEIN PHOSPHATASE TYPE 2C

Claywell, Ja 01 May 2019 (has links) (PDF)
Chlamydia are obligate intracellular bacterial pathogens that are responsible for infectious blindness, sexually transmitted infections, and acute respiratory disease in humans. These pathogens undergo an essential biphasic developmental cycle differentiating between two functionally distinct forms known as the infectious elementary body (EB) and the replicative reticulate body (RB). Identifying the signals and regulatory mechanisms that enable Chlamydia to establish infection, differentiate between the two developmental forms, and survive within the host cell is critical to understanding chlamydial pathogenesis and developing future therapeutic strategies. In pathogenic bacteria, serine, threonine, and tyrosine (Ser/Thr/Tyr) protein kinases and phosphatases are critical for development, metabolism, and virulence. Chlamydia encode two validated protein kinases (pkn1 and pknd), a putative protein phosphatase (ctl0511; CppA), and appear capable of global phosphorylation that differs between the developmental forms. While these findings support a role for protein phosphorylation in chlamydial pathogenesis, a validated cognate protein phosphatase for Pkn1 and PknD mediating reversible phosphorylation was lacking. We hypothesized that CppA is the partner phosphatase for the chlamydial protein kinases, and in this study we validated and characterized CppA as a broad specificity protein phosphatase type 2C. Using in vivo and in vitro approaches we demonstrated that CppA acts on P-Ser/Thr/Tyr residues and can dephosphorylate multiple chlamydial protein substrates including PknD and the FHA 2 domain of CdsD, a component of the type 3 secretion apparatus. The importance of CppA for chlamydial growth and development was determined using a chemical “knock-out” approach and study of CppA missense mutations identified in slow growing C. trachomatis L2 chemical mutants. Treatment of C. trachomatis L2, C. trachomatis D, and C. muridarum with CppA inhibitors significantly reduced progeny levels and inclusion size in a time dependent manner with more significant growth inhibition in the first 12 hours post infection. Collectively, our findings support that CppA works in conjunction with PknD, and likely Pkn1, to mediate reversible phosphorylation of multiple protein substrates leading to changes in chlamydial physiology that appear to be key for early steps in development.
30

Protein Phosphatase Inhibitors Calyculin a and Fostriecin Protect Rabbit Cardiomyocytes in Late Ischemia

Armstrong, Stephen C., Gao, W., Lane, J. R., Ganote, C. E. 01 January 1998 (has links)
Calcium-tolerant rabbit cardiomyocytes were isolated using retrograde aortic perfusion with a nominally calcium-free, collagenase buffer. In vitro ischemic preconditioning was induced by a 10-min episode of ischemic pelleting, followed by a 15-min post-incubation and a prolonged period of ischemic pelleting. Injury was assessed by determination of cell contracture and trypan blue permeability following hypotonic swelling and correlated with metabolic assays of lactate and adenine nucleotides. The protein phosphatase PP1/2A inhibitor calyculin A and PP2A-selective fostriecin protected isolated rabbit cardiomyocytes from lethal injury after a 10-min pre-incubation and when added late into ischemic pellets after a delay of 75 min. At the time of late drug addition, cells were severely ATP-depleted and in rigor contracture. Protection with Calyculin A from 1 nM to 1 μM was dose-related. Cells pre-incubated with 10 nM to 10 μM fostriecin 10 min prior to ischemic pelleting were protected with an EC50 approximating 71 nM, implying protection at a PP2A-selective dose. The selective protein kinase C inhibitor, calphostin C, blocked ischemic preconditioning protection but not protection from 1 μM calyculin A. Protection of severely ischemic cardiomyocytes following protein phosphatase inhibition appears not to require PKC activity or ATP conservation. Pre-incubation of cells with calyculin A induced high levels of phosphorylation in p38 mitogen activated protein kinase (MAPK), as compared to the ischemia-induced phosphorylation observed in the untreated group only at 30 min of ischemia, providing evidence of protein phosphatase activity in cardiomyocytes. Pharmacological protection in late ischemia has been demonstrated, but the mechanism of protection is undetermined.

Page generated in 0.0943 seconds