• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 22
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 330
  • 330
  • 92
  • 36
  • 36
  • 30
  • 23
  • 22
  • 21
  • 21
  • 21
  • 21
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Applications of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and x-ray photoelectron spectroscopy (XPS) to study interactions of genetically engineered proteins with noble metal films /

Suzuki, Noriaki, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 132-140).
292

A computational approach to discovering p53 binding sites in the human genome

Lim, Ji-Hyun January 2013 (has links)
The tumour suppressor p53 protein plays a central role in the DNA damage response/checkpoint pathways leading to DNA repair, cell cycle arrest, apoptosis and senescence. The activation of p53-mediated pathways is primarily facilitated by the binding of tetrameric p53 to two 'half-sites', each consisting of a decameric p53 response element (RE). Functional REs are directly adjacent or separated by a small number of 1-13 'spacer' base pairs (bp). The p53 RE is detected by exact or inexact matches to the palindromic sequence represented by the regular expression [AG][AG][AG]C[AT][TA]G[TC][TC][TC] or a position weight matrix (PWM). The use of matrix-based and regular expression pattern-matching techniques, however, leads to an overwhelming number of false positives. A more specific model, which combines multiple factors known to influence p53-dependent transcription, is required for accurate detection of the binding sites. In this thesis, we present a logistic regression based model which integrates sequence information and epigenetic information to predict human p53 binding sites. Sequence information includes the PWM score and the spacer length between the two half-sites of the observed binding site. To integrate epigenetic information, we analyzed the surrounding region of the binding site for the presence of mono- and trimethylation patterns of histone H3 lysine 4 (H3K4). Our model showed a high level of performance on both a high-resolution data set of functional p53 binding sites from the experimental literature (ChIP data) and the whole human genome. Comparing our model with a simpler sequence-only model, we demonstrated that the prediction accuracy of the sequence-only model could be improved by incorporating epigenetic information, such as the two histone modification marks H3K4me1 and H3K4me3.
293

Mechanism of MDA5 Recognition of Short RNA Ligands and Crystal Structure of PepQ

Watts, Tylan Aubrey 16 December 2013 (has links)
The innate immune pathways that stimulate the expression of cytokines and proapoptotic factors in response to infection are triggered by the activation of the cytosolic receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiationassociated gene 5 (MDA5). Activation of both receptors occurs as a result of binding to RNA. MDA5 only recognizes double stranded forms of RNA, whereas RIG-I is capable of recognizing both single and double stranded RNA. In vivo, MDA5 is known to be stimulated by long (>1 kb) strands of RNA, forming filaments along the phosphate backbone. However, the manner in which MDA5 can recognize the terminal end of its RNA ligand is uncertain. I have examined the mechanism of binding of the MDA5 protein by comparing MDA5 binding to short (<18 bp) blunt RNA, 5’ triphosphate RNA, and RNA with a 3’ or 5’ overhang. It is shown that while the MDA5 protein regulatory domain (RD) is essential for RNA recognition, the MDA5 RD only weakly recognizes short double stranded RNA ligands with overhangs or a 5’ triphosphate group. The Cys951 residue was shown to disrupt stability of the MDA5 RD-RNA complex. Binding analyses were performed using a combination of SDS-PAGE, gel filtration analysis, and nondenaturing gel electrophoresis. In addition, structural data was gathered by crystallization of the MDA5 RD-RNA complex using X-ray crystallography. These results help to establish the manner in which MDA5 is regulated predominantly to the binding of long RNA ligands. Also included in this document is structural data on the dimer form of the PepQ protein from E. coli. PepQ is a highly conserved proline peptidase that has a secondary activity of hydrolyzing organophosphorus triesters, toxic compounds found in many pesticides. The PepQ protein was crystallized and analyzed by X-ray diffraction. The dimer interface was clearly defined within the structure and provides insight into how the active dimer forms from the PepQ monomer.
294

Molecular and ultrastructural analysis of Tpr, a nuclear pore complex-attached coiled-coil protein /

Hase, Manuela, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.
295

Processing, stability and interactions of lung surfactant protein C /

Li, Jing, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.
296

Exoenzyme S of Pseudomonas aeruginosa : cellular targets and interaction with 14-3-3 /

Yasmin, Lubna, January 2007 (has links)
Diss. (sammanfattning) Umeå : Univ., 2007. / Härtill 4 uppsatser.
297

Structure and function in c-Myc and Grx4 : two key proteins involved in transcriptional activation and oxidative stress /

Fladvad, Malin, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 5 uppsatser.
298

Mechanisms of T cell tolerance to the RNA-binding nuclear autoantigen human La/SS-B

Yaciuk, Jane Cherie. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 122-140.
299

TonB dependent transport

Shultis, David Donahue. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
300

Farmacocinetica da polimixina B intravenosa em pacientes em Unidade de Terapia Intensiva

Sandri, Ana Maria January 2013 (has links)
Foi realizado um estudo de farmacocinética da polimixina B em pacientes críticos com desenvolvimento de um modelo populacional. Os critérios de inclusão foram pacientes internados em Unidade de Terapia Intensiva, com idade igual ou superior a 18 anos e em uso de polimixina B intravenosa por um período mínimo de 48 horas. Amostras de sangue, urina e dialisato foram coletadas durante um intervalo de doses no estado de equilíbrio. A concentração de polimixina B no plasma foi medida por meio de cromatografia líquida de alta performance associada à espectrometria de massas acoplada à espectrometria de massas, sua ligação às proteínas plasmáticas foi determinada por meio de diálise de equilíbrio rápido e a fração livre foi calculada. Foram realizadas análise farmacocinética populacional e Simulações de Monte Carlo. Foram incluídos 24 pacientes, dos quais dois estavam em hemodiálise contínua; 54,2% eram do sexo masculino e as medianas da idade, do escore APACHE e do peso corporal total foram de 61,5 anos, 21,5 e 62,5kg, respectivamente. As doses de polimixina B, conforme prescrição do médico assistente, variaram entre 0,45-3,38mg/kg/dia. O clearance estimado da creatinina nos 22 pacientes sem hemodiálise variou entre 10-143mL/min. A mediana da fração livre plasmática da polimixina B foi de 0,42 e a média (± desvio padrão) da fração livre da área sob a curva ao longo de um dia (fAUC0-24h) da polimixina B foi de 29,2±12,0mg•h/L, incluindo os pacientes em hemodiálise. A polimixina B foi excretada predominantemente por vias não renais e as medianas de sua recuperação urinária de forma inalterada foi de 4,04% e do seu clearance renal foi de 0,061L/hora. Nos pacientes 1 e 2 em hemodiálise foram identificados, respectivamente, clearance corporal total de 0,043 e 0,027L/h/kg, clearance da hemodiálise de 0,0052 e 0,0015L/h/kg; no dialisato foram recuperados 12,2% e 5,62% da dose como polimixina B não modificada. O clearance corporal total da polimixina B não mostrou nenhuma relação com o clearance da creatinina, escore APACHE II ou idade. A disposição da polimixina B no tempo foi adequadamente descrita pelo modelo de dois compartimentos com eliminação linear. O modelo farmacocinético populacional proporcionou ajustes excelentes para os perfis observados de concentração-tempo para pacientes individuais e as concentrações individuais e populacionais ajustadas foram precisas. O ajuste dos clearances e dos volumes de distribuição para o peso corporal total reduziu a variabilidade intersujeitos em 3,4% para o clearance e 41,7% para o volume de distribuição central; nos pacientes em diálise, após esse ajuste, os parâmetros estimados se assemelharam aos dos demais pacientes. As Simulações de Monte Carlo foram feitas com seis diferentes regimes de doses clinicamente relevantes escalonados pelo peso corporal total. O regime de doses de 1,5mg/kg 12/12h forneceu uma AUC0-24h de polimixina B no dia 4 de 90.4mg•hora/L para 50% dos pacientes, adequada para erradicação bacteriana em infecções graves por Pseudomonas aeruginosa ou Acinetobacter baumannii com concentração inibitória mínima para a polimixina B ≤2mg/L. Nas Simulações de Monte Carlo também foi possível identificar que uma melhor área sob a curva só foi atingida no dia 4 de tratamento. Este estudo mostrou que a dose de polimixina B intravenosa deve ser ajustada ao peso corporal total, que o melhor regime de doses é o de 1,5mg/kg 12/12h precedido de dose de ataque de 2,5mg/kg e que não há indicação de ajuste para a função renal, mesmo em pacientes em hemodiálise contínua. / A polymyxin B pharmacokinetics study in critically ill patients was conducted with the development of a population modeling. The inclusion criteria were patients from Intensive Care Unit, aged ≥18 years who received intravenous polymyxin B for ≥ 48 hours. Blood, urine and dialysate samples were collected over a dosing interval at steady state. Polymyxin B concentrations was measured by liquid chromatography- tandem mass spectrometry, its plasma protein binding was determined by rapid equilibrium dialysis and unbound fraction was calculated. Population pharmacokinetic analysis and Monte Carlo Simulations were conducted. Twenty four patients were enrolled, two of whom on continuous hemodialysis; 54.2% were male; the median of age, APACHE II score and total body weight were 61.5years, 21.5 and 62.5kg, respectively. The physician-selected dose of polymyxin B was 0.45- 3.38mg/kg/day. The creatinine clearance of the 22 patients without hemodialysis ranged from 10 to 143mL/min. The median unbound fraction in plasma of polymyxin B was 0.42 and the mean (± standard deviation) of the area under the curve over a day for unbound (fAUC0-24h) polymyxin B was 29.2±12.0mg•hour/L, including hemodialysis patients. Polymyxin B was predominantly nonrenally cleared with median unchanged urinary recovered of 4.04%; the median renal clearance was 0.061L/hour. Patients 1 and 2 in hemodialysis presented, respectively, total body clearance of 0.043 and 0.027L/h/kg, hemodialysis clearance of 0.0052 and 0.0015L/h/kg; 12.2% and 5.62% of the polymyxin dose were recovered intact in the dialysate. Polymyxin B total body clearance did not show any relationship with creatinine clearance, APACHE II score, or age. The time course of polymyxin B concentrations was well described by a 2-compartment disposition model with linear elimination. The population pharmacokinetics model provided excellent fits to the observed concentration-time profiles for individual patients and the individual-fitted and population-fitted concentrations were adequately precise. Linear scaling of clearances and volumes of distribution by total body weight reduced the between subject variability in 3.4% for clearance and 41.7% for the central volume of distribution; after this scaling, the estimated parameters in hemodialysis patients were within the range of estimates from the other patients. The population mean of the total body clearance of polymyxin B when scaled by total body weight (0.0276L/hour/kg) showed remarkably low interindividual variability. The Monte Carlo Simulations were performed for six different clinically relevant dosage regimens scaled by total body weight. The regimen of 1.5mg/kg/12 hours provided an AUC0- 24h of polymyxin B of 90.4 mg•h/L in day 4 for 50% of patients which is appropriate considering severe infections by Pseudomonas aeruginosa or Acinetobacter baumannii with minimal inhibitory concentration for polymyxin B ≤2mg/L. In Monte Carlo Simulations we also identified that the best area under the curve was attained only in the day 4 of the treatment. This study showed that doses of intravenous polymyxin B are best scaled by total body weight, that the best regimen of doses is 3mg/kg/day with a loading dose of 2.5mg/kg and that its dosage selection should not be based on renal function, even in patients in continuous hemodialysis.

Page generated in 0.086 seconds