• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 43
  • 43
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques / Resurrecting the past through heterogeneous models of protein sequence evolution

Groussin, Mathieu 08 November 2013 (has links)
La reconstruction et la résurrection moléculaire de protéines ancestrales est au coeur de cette thèse. Alors que les données moléculaires fossiles sont quasi inexistantes, il est possible d'estimer quelles étaient les séquences ancestrales les plus probables le long d'un arbre phylogénétique décrivant les relations de parentés entre séquences actuelles. Avoir accès à ces séquences ancestrales permet alors de tester de nombreuses hypothèses biologiques, de la fonction des protéines ancestrales à l'adaptation des organismes à leur environnement. Cependant, ces inférences probabilistes de séquences ancestrales sont dépendantes de modèles de substitution fournissant les probabilités de changements entre acides aminés. Ces dernières années ont vu le développement de nouveaux modèles de substitutions d'acides aminés, permettant de mieux prendre en compte les phénomènes biologiques agissant sur l'évolution des séquences protéiques. Classiquement, les modèles supposent que le processus évolutif est à la fois le même pour tous les sites d'un alignement protéique et qu'il est resté constant au cours du temps lors de l'évolution des lignées. On parle alors de modèle homogène en temps et en sites. Les modèles récents, dits hétérogènes, ont alors permis de lever ces contraintes en permettant aux sites et/ou aux lignées d'évoluer selon différents processus. Durant cette thèse, de nouveaux modèles hétérogènes en temps et sites ont été développés en Maximum de Vraisemblance. Il a notamment été montré qu'ils permettent d'améliorer considérablement l'ajustement aux données et donc de mieux prendre en compte les phénomènes régissant l'évolution des séquences protéiques afin d'estimer de meilleurs séquences ancestrales. A l'aide de ces modèles et de reconstruction ou résurrection de protéines ancestrales en laboratoire, il a été montré que l'adaptation à la température est un déterminant majeur de la variation des taux évolutifs entre lignées d'Archées. De même, en appliquant ces modèles hétérogènes le long de l'arbre universel du vivant, il a été possible de mieux comprendre la nature du signal évolutif informant de manière non-parcimonieuse un ancêtre universel vivant à plus basse température que ses deux descendants, à savoir les ancêtres bactériens et archéens. Enfin, il a été montré que l'utilisation de tels modèles pouvait permettre d'améliorer la fonctionnalité des protéines ancestrales ressuscitées en laboratoire, ouvrant la voie à une meilleure compréhension des mécanismes évolutifs agissant sur les séquences biologiques / The molecular reconstruction and resurrection of ancestral proteins is the major issue tackled in this thesis manuscript. While fossil molecular data are almost nonexistent, phylogenetic methods allow to estimate what were the most likely ancestral protein sequences along a phylogenetic tree describing the relationships between extant sequences. With these ancestral sequences, several biological hypotheses can be tested, from the evolution of protein function to the inference of ancient environments in which the ancestors were adatapted. These probabilistic estimations of ancestral sequences depend on substitution models giving the different probabilities of substitution between all pairs of amino acids. Classicaly, substitution models assume in a simplistic way that the evolutionary process remains homogeneous (constant) among sites of the multiple sequence alignment or between lineages. During the last decade, several methodological improvements were realised, with the description of substitution models allowing to account for the heterogeneity of the process among sites and in time. During my thesis, I developed new heterogeneous substitution models in Maximum Likelihood that were proved to better fit the data than any other homogeneous or heterogeneous models. I also demonstrated their better performance regarding the accuracy of ancestral sequence reconstruction. With the use of these models to reconstruct or resurrect ancestral proteins, my coworkers and I showed the adapation to temperature is a major determinant of evolutionary rates in Archaea. Furthermore, we also deciphed the nature of the phylogenetic signal informing substitution models to infer a non-parsimonious scenario for the adaptation to temperature during early Life on Earth, with a non-hyperthermophilic last universal common ancestor living at lower temperatures than its two descendants. Finally, we showed that the use of heterogeneous models allow to improve the functionality of resurrected proteins, opening the way to a better understanding of evolutionary mechanisms acting on biological sequences
42

Towards higher predictability in enzyme engineering : investigation of protein epistasis in dynamic ß-lactamases and Cal-A lipase

Alejaldre Ripalda, Lorea 12 1900 (has links)
L'ingénierie enzymatique est un outil très avantageux dans l'industrie biotechnologique. Elle permet d'adapter les enzymes à une activité ou à une condition de réaction spécifique. En outre, elle peut permettre de déchiffrer les éléments clés qui ont facilité leur modification. Bien que l'ingénierie enzymatique soit largement pratiquée, elle comporte encore plusieurs goulets d'étranglement. Certains de ces goulets d'étranglement sont techniques, comme le développement de méthodologies pour la création de banques de mutations ciblées ou la réalisation de criblages à haut débit, et d'autres sont conceptuels, comme le déchiffrage des caractéristiques clés pertinentes d'une protéine cible pour la réussite d'un projet d'ingénierie. Parmi ces défis, l'épistasie intra-génique, ou la non-additivité des effets phénotypiques des mutations, est une caractéristique qui entrave grandement la prévisibilité. L'amélioration de l'ingénierie enzymatique nécessite une approche multidisciplinaire qui inclut une meilleure compréhension des relations structure-fonction-évolution. Cette thèse vise à contribuer à l'avancement de l'ingénierie enzymatique en étudiant deux systèmes modèles. Premièrement, des variantes dynamiques de la ß-lactamase TEM-1 ont été choisies pour étudier le lien entre la dynamique des protéines et l'évolution. La ß-lactamase TEM-1 a été largement caractérisée dans la littérature, ce qui s'est traduit par des connaissances approfondies sur son mécanisme de réaction, ses caractéristiques structurelles et son évolution. Les variantes de la ß-lactamase TEM-1 utilisées comme système modèle dans cette thèse ont été largement caractérisées, montrant une dynamique accrue à l'échelle temporelle pertinente pour la catalyse (µs à ms) mais maintenant la reconnaissance du substrat. Dans cette thèse, l'évolution in vitro de ces variantes dynamiques a été réalisée par des cycles itératifs de mutagenèse et de sélection aléatoires pour permettre une exploration impartiale du paysage de ‘fitness’. Nous démontrons que la présence de ces mouvements particuliers au début de l'évolution a permis d'accéder à des voies de mutations connues. De plus, des interactions épistatiques connues ont été introduites dans les variantes dynamiques. Leur caractérisation in silico et cinétique a révélé que les mouvements supplémentaires sur l'échelle de temps de la catalyse ont permis d'accéder à des conformations conduisant à une fonction améliorée, comme dans le TEM-1 natif. Dans l'ensemble, nous démontrons que l'évolution de la b-lactamase TEM-1 vers une nouvelle fonction est compatible avec divers mouvements à l'échelle de temps µs à ms. Il reste à savoir si cela peut se traduire par d'autres enzymes ayant un potentiel biotechnologique. Deuxièmement, la lipase Cal-A, pertinente sur le plan industriel, a été choisie pour identifier les caractéristiques qui pourraient faciliter son ingénierie. La lipase Cal-A présente des caractéristiques telles que la polyvalence du substrat et une grande stabilité thermique et réactivité qui la rendent attrayante pour la modification des triglycérides ou la synthèse de molécules pertinentes dans les industries alimentaire et pharmaceutique. Contrairement à TEM-1, la plupart des études d'évolution in vitro de la lipase Cal-A ont été réalisées dans un but industriel, avec une exploration limitée de l'espace de mutation. Par conséquent, les caractéristiques qui définissent la fonction de la lipase Cal-A restent insaisissables. Dans cette thèse, nous faisons état de la mutagenèse ciblée de la lipase Cal-A, confirmant l'existence d'une région clé pour la reconnaissance du substrat. Cela a été fait en combinant une nouvelle méthodologie de création de bibliothèque basée sur l'assemblage Golden-gate avec une visualisation structurelle basée sur des scripts pour identifier et cartographier les mutations sélectionnées dans la structure 3D. La caractérisation et la déconvolution de deux des plus aptes ont révélé l'existence d'une épistasie dans l'évolution de la lipase Cal-A vers une nouvelle fonction. Dans l'ensemble, nous démontrons que l’identification d'une variété de propriétés suite à la mutagenèse ciblée peut grandement améliorer la connaissance d'une enzyme. Cette information peut être appliquée pour améliorer l'efficacité de l'ingénierie dirigée. / Enzyme engineering is a tool with great utility in the biotechnological industry. It allows to tailor enzymes to a specific activity or reaction condition. In addition, it can allow to decipher key elements that facilitated their modification. While enzyme engineering is extensively practised, it still entails several bottlenecks. Some of these bottlenecks are technical such as the development of methodologies for creating targeted mutational libraries or performing high-throughput screening and some are conceptual such as deciphering the key relevant features in a target protein for a successful engineering project. Among these challenges, intragenic epistasis, or the non-additivity of the phenotypic effects of mutations, is a feature that greatly hinders predictability. Improving enzyme engineering needs a multidisciplinary approach that includes gaining a better understanding of structure-function-evolution relations. This thesis seeks to contribute in the advancement of enzyme engineering by investigating two model systems. First, dynamic variants of TEM-1 ß-lactamase were chosen to investigate the link between protein dynamics and evolution. TEM-1 ß-lactamase has been extensively characterized in the literature, which has translated into extensive knowledge on its reaction mechanism, structural features and evolution. The variants of TEM-1 ß-lactamase used as model system in this thesis had been extensively characterized, showing increased dynamics at the timescale relevant to catalysis (µs to ms) but maintaining substrate recognition. In this thesis, in vitro evolution of these dynamic variants was done by iterative rounds of random mutagenesis and selection to allow an unbiased exploration of the fitness landscape. We demonstrate that the presence of these particular motions at the outset of evolution allowed access to known mutational pathways. In addition, known epistatic interactions were introduced in the dynamic variants. Their in silico and kinetic characterization revealed that the additional motions on the timescale of catalysis allowed access to conformations leading to enhanced function, as in native TEM-1. Overall, we demonstrate that the evolution of TEM-1 b-lactamase toward new function is compatible with diverse motions at the µs to ms timescale. Whether this can be translated to other enzymes with biotechnological potential remains to be explored. Secondly, the industrially relevant Cal-A lipase was chosen to identify features that could facilitate its engineering. Cal-A lipase presents characteristics such as substrate versatility and high thermal stability and reactivity that make it attractive for modification of triglycerides or synthesis of relevant molecules in the food and pharmaceutical industries. Contrary to TEM-1, most in vitro evolution studies of Cal-A lipase have been done towards an industrially-specified goal, with limited exploration of mutational space. As a result, features that define function in Cal-A lipase remain elusive. In this thesis, we report on focused mutagenesis of Cal-A lipase, confirming the existence of a key region for substrate recognition. This was done by combining a novel library creation methodology based on Golden-gate assembly with script-based structural visualization to identify and map the selected mutations into the 3D structure. The characterization and deconvolution of two of the fittest revealed the existence of epistasis in the evolution of Cal-A lipase towards new function. Overall, we demonstrate that mapping a variety of properties following mutagenesis targeted to specific regions can greatly improve knowledge of an enzyme that can be applied to improve the efficiency of directed engineering.
43

Detection and Analysis of Novel Microproteins in the Human Heart based on Protein Evidence, Conservation, Subcellular Localization, and Interacting Proteins

Schulz, Jana Felicitas 03 March 2023 (has links)
Kürzlich wurde mithilfe von Ribo-seq Experimenten die Translation hunderter Mikroproteine in menschlichen Herzen entdeckt. Diese blieben zuvor aufgrund ihrer geringen Größe (< 100 Aminosäuren) unentdeckt, und ihre physiologische Rolle ist noch weitgehend unbekannt. Ziel dieser Promotionsarbeit ist es, potentielle Funktionen dieser neuartigen Mikroproteine zu entschlüsseln. Dabei sollen insbesondere die Aufklärung ihrer evolutionären Konservierungssignatur, subzellulären Lokalisierung und ihres Proteininteraktoms helfen. Die Konservierungsanalyse ergab, dass fast 90% der Mikroproteine nur in Primaten konserviert ist. Weiterhin konnte ich die Produktion von Mikroproteine in vitro und in vivo nachweisen, die subzelluläre Lokalisierung von 92 Mikroproteinen definieren, und Interaktionspartner für 60 Mikroproteine identifizieren. Dutzende dieser Mikroproteine lokalisieren in Mitochondrien. Dazu gehörte ein im Herzen angereichertes Mikroprotein, das aufgrund der Interaktions- und Lokalisationsdaten einen neuartigen Modulator der mitochondrialen Proteintranslation darstellen könnte. Der Interaktom-Screen zeigte außerdem, dass evolutionär junge Mikroproteine ähnliche Interaktionsfähigkeiten wie konservierte Kandidaten haben. Schließlich wurden kurze Sequenzmotive identifiziert, die Mikroprotein-Protein-Wechselwirkungen vermitteln, wodurch junge Mikroproteine mit zellulären Prozessen – wie z.B. Endozytose und Spleißen – in Verbindung gebracht werden konnten. Zusammenfassend wurde die Produktion vieler kleiner Proteine im menschlichen Herzen bestätigt, von denen die meisten lediglich in Primaten konserviert sind. Zusätzlich verknüpften umfangreiche Lokalisierungs- und Interaktionsdaten mehrere Mikroproteine mit Prozessen wie Spleißen, Endozytose und mitochondrialer Translation. Weitere Untersuchungen dieses zuvor verborgenen Teils des Herzproteoms werden zu einem besseren Verständnis von evolutionär jungen Proteinen und kardiologischen Prozessen beitragen. / Recently, the active translation of hundreds of previously unknown microproteins was detected using ribosome profiling on tissues of human hearts. They had remained undetected due to their small size (< 100 amino acids), and their physiological roles are still largely unknown. This dissertation aims to investigate these novel microproteins and validate their translation by independent methods. Particularly, elucidating their conservation signature, subcellular localization, and protein interactome shall aid in deciphering their potential biological role. Conservation analysis revealed that sequence conservation of almost 90% of microproteins was restricted to primates. I next confirmed microprotein production in vitro and in vivo by in vitro translation assays and mass spectrometry-based approaches, defined the subcellular localization of 92 microproteins, and identified significant interaction partners for 60 candidates. Dozens of these microproteins localized to the mitochondrion. These included a novel cardiac-enriched microprotein that may present a novel modulator of mitochondrial protein translation based on its interaction profile and subcellular localization. The interactome screen further revealed that evolutionarily young microproteins have similar interaction capacities to conserved candidates. Finally, it allowed identifying short linear motifs that may mediate microprotein-protein interactions and implicated several young microproteins in distinct cellular processes such as endocytosis and splicing. I conclude that many novel small proteins are produced in the human heart, most of which exhibit poor sequence conservation. I provide a substantial resource of microprotein localization and interaction data that links several to cellular processes such as splicing, endocytosis, and mitochondrial translation. Further investigation into this hidden part of the cardiac proteome will contribute to our understanding of recently evolved proteins and heart biology.

Page generated in 0.3933 seconds