• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 59
  • 44
  • 43
  • 16
  • 14
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 642
  • 642
  • 223
  • 153
  • 103
  • 96
  • 72
  • 72
  • 68
  • 65
  • 60
  • 56
  • 55
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Inhibition of HOX/PBX dimer formation leads to necroptosis in acute myeloid leukemia cells

Alharbi, R.A., Pandha, H.S., Simpson, G.R., Pettengell, R., Poterlowicz, Krzysztof, Thompson, A., Harrington, K.J., El-Tanani, Mohamed, Morgan, Richard 08 July 2017 (has links)
Yes / The HOX genes encode a family of transcription factors that have key roles in both development and malignancy. Disrupting the interaction between HOX proteins and their binding partner, PBX, has been shown to cause apoptotic cell death in a range of solid tumors. However, despite HOX proteins playing a particularly significant role in acute myeloid leukemia (AML), the relationship between HOX gene expression and patient survival has not been evaluated (with the exception of HOXA9), and the mechanism by which HOX/PBX inhibition induces cell death in this malignancy is not well understood. In this study, we show that the expression of HOXA5, HOXB2, HOXB4, HOXB9, and HOXC9, but not HOXA9, in primary AML samples is significantly related to survival. Furthermore, the previously described inhibitor of HOX/PBX dimerization, HXR9, is cytotoxic to both AML-derived cell lines and primary AML cells from patients. The mechanism of cell death is not dependent on apoptosis but instead involves a regulated form of necrosis referred to as necroptosis. HXR9-induced necroptosis is enhanced by inhibitors of protein kinase C (PKC) signaling, and HXR9 combined with the PKC inhibitor Ro31 causes a significantly greater reduction in tumor growth compared to either reagent alone. / Funded in part through a grant to RA from the Cultural Bureau of the Kingdom of Saudi Arabia.
142

MK2 and ETV1 Are Prognostic Factors in Esophageal Adenocarcinomas

Jomrich, Gerd, Maroske, Florian, Stieger, Jasmin, Preusser, Matthias, Ilhan-Mutlu, Aysegül, Winkler, Daniel, Kristo, Ivan, Paireder, Matthias, Schoppmann, Sebastian Friedrich January 2018 (has links) (PDF)
Background. Esophageal cancer is ranked in the top ten of diagnosed tumors worldwide. Even though improvements in survival could be noticed over the last years, prognosis remains poor. ETS translocation variant 1 (ETV1) is a member of a family of transcription factors and is phosphorylated by mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2). Aim of this study was to evaluate the prognostic role of MK2 and ETV1 in esophageal cancer. Methods. Consecutive patients that underwent surgical resection at the department of surgery at the Medical University of Vienna between 1991 and 2012 were included into this study. After microscopic analysis, tissue micro arrays (TMAs) were created and immunohistochemistry was performed with antibodies against MK2 and ETV1. Results. 323 patients were included in this study. Clinical data was achieved from a prospective patient data base. Nuclear overexpression of MK2 was observed in 143 (44.3%) cases for nuclear staining and in 142 (44.0%) cases a cytoplasmic overexpression of MK2 was observed. Nuclear and cytoplasmic ETV1 overexpression was detected in 20 cases (6.2%) and 30 cases (9.3%), respectively. In univariate survival analysis, cMK2 and nETV1 were found to be significantly associated with patients' overall survival. Whereas overexpression of cMK2 was associated with shorter, nETV1 was associated with longer overall survival. In multivariate survival analysis, both cMK2 and nETV1 were found to be independent prognostic factors for the subgroup of EAC as well. Discussion. Expression of MK2 and ETV1 are prognostic factors in patients, with esophageal adenocarcinoma.
143

Organelle movement in melanophores: Effects of <em>Panax ginseng</em>, ginsenosides and quercetin

Eriksson, Therese January 2009 (has links)
<p><em>Panax ginseng</em> is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from <em>Xenopus laevis</em> to investigate the effects of <em>Panax ginseng</em> extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that <em>Panax ginseng</em> and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK.</p> / <p><em>Panax ginseng </em>är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av <em>Panax ginseng</em> på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att <em>Panax ginseng</em>, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.</p>
144

Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin

Eriksson, Therese January 2009 (has links)
Panax ginseng is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from Xenopus laevis to investigate the effects of Panax ginseng extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that Panax ginseng and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK. / Panax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
145

KATP Channel Phosphorylation: Mechanisms and Contribution to Vascular Tone Regulation by Vasodilating and Vasoconstricting Hormones and Neurotransmitters

Shi, Yun 03 December 2007 (has links)
Contractility of vascular smooth muscles (VSMs) in resistance arteries determines systemic blood pressure and blood supplies to local tissues, in which ATP sensitive K+ (KATP) channels play a role. The KATP channels that couple metabolic state to cellular activity are activated by multiple hormonal vasodilators and inhibited by vasoconstrictors. To understand the molecular mechanisms for the channel regulation by vasodilators, we studied the effects of β-adrenergic receptors on Kir6.1/SUR2B in HEK cells. Stimulation of β-adrenergic receptors activated the channels, which relied on the GS-protein, adenylyl cyclase, cAMP and PKA system. Using mutational analysis, we scanned all the putative PKA sites on Kir6.1 and SUR2B subunits and identified two residues (Ser1351 and Ser1387) in SUR2B critical for channel activation. In vitro phosphorylation experiments confirmed that Ser1387 but not Ser1351 was phosphorylated in isolated SUR2B peptides. Molecular modeling and molecular dynamics simulations reveal that phosphorylation at Ser1387 causes interdomain movements in SUR2B subunit. Blockage of the movements by engineering a disulfide bond across NBD2 and TMD1 eliminated the PKA-dependent channel activation. We also studied the molecular basis for the inhibition of vascular KATP channels by PKC. In the HEK expression system, we found that the Kir6.1/SUR2B channel but not the Kir6.2/SUR2B was drastically inhibited by PKC stimulation. We constructed Kir6.1/Kir6.2 chimeras and identified two critical protein domains for the Kir6.1 channel inhibition by PKC. The distal C-terminus was the direct target of PKC where multiple phosphorylation sites were identified. These phosphorylation sites were located in a short sequence with stereotypical sequence repeats. Mutation of any decreased the effects of PKC. Joint mutation of all of them prevented the channel inhibition by PKC. The proximal N-terminus is also involved in PKC effects without phosphorylation sites, suggesting it may play a role in channel gating. Thus, this thesis provides experimental evidence for the vascular KATP channel modulation by PKA and PKC. Phosphorylation of the Kir6.1 and SUR2B subunits by PKC and PKA produce inhibition and activation of the vascular KATP channel, respectively, which appears to be one of the molecular bases contributing to vascular tone regulation by both vasoconstricting and vasodilating hormones and neurotransmitters.
146

Light-And Cytokinin-Regulated Plastid And Nuclear Gene Expression In Cucumber (Cucumis Sativus L)

Ullanat, Rajesh 05 1900 (has links)
Light and phytohormones, such as cytokinins, have been known to play a pivotal role in numerous physiological processes in plant cells. Previous work in our laboratory has revealed the light- and cytokinin- modulated changes both in the levels of specific tRNA species and their modified nucleotide contents, in addition to the characterization of specific tRNAs and tRNA genes from higher plants. The plant hormone cytokinin, which is of particular interest to us has been implicated to be involved in processes such as induction of cell division, plastid biogenesis and delay of senescence. Ongoing work in our laboratory also points towards the role of Ca2+ as a second messenger in cytokinin mediated gene expression. With the objective of isolation of specific tRNA genes which could then be used as probes to study the light- and phytohormone- induced changes in the levels of respective functional mature tRNAs, a previously isolated clone containing a 6.6kb insert that hybridized with 3 end labeled cucumber total cellular tRNA was sequenced by the dideoxy chain termination method. Sequence analysis of the 6.6 kb DNA fragment has revealed a chloroplast genome DNA fragment containing the trnNGUU and trnRACG genes in addition to the genes coding for the ribosomal RNAs 4.5S, 5S and 23S as well as the protein coding genes ccsA (cytochrome c-synthesis) and ndhD(NADH plastoquinone oxidoreductase).These genes were found to be arranged in the order-23S-4.5S-5S-trnRACG-trnNGUU-ccsA-ndhD. This shows a divergence from the gene organization in the completely sequenced chloroplast genomes of other higher plant species such as tobacco, maize, rice and Arabidopsis, especially with regard to the absence of a highly conserved trnLUAG gene that has been shown to be present in the trnNGUU-ndhD intergenic region. The cucumber chloroplast trnNGUU and trnRACG genes have shown very high homology (>90%) whereas ccsA and ndhD show 50-61% similarity to corresponding genes from chloroplast genomes of other plant species. The relative levels of tRNAArg and tRNAAsn were determined by Northern analysis using the tRNA gene probes, in etiolated excised cucumber cotyledons treated with light or phytohormones, such as cytokinin (BA) and auxin (2,4-D). Light and phytohormones were found to significantly increase the levels of tRNAArg unlike in the case tRNAAsn where no significant changes in the levels were observed. This result points towards the regulation of relative levels of specific tRNA species by light and cytokinin so as to match the codon usage of the mRNA population during light- and cytokinin- induced plant development in cucumber. Northern analyses were also performed to monitor the relative transcript levels of the plastid encoded ccsA and ndhD in etiolated excised cucumber cotyledons treated with light or phytohormones. ccsA transcript levels were found to be significantly reduced in auxin treated cucumber cotyledons where as exogenous application of cytokinin to either dark-grown or light exposed cotyledons did not seem to have any pronounced effect. ndhD transcripts were found to be up-regulated by cytokinin treatment or light exposure in comparison to un-treated controls probably indicating a point of overlap in the light/ cytokinin mediated signal transduction pathways. Auxin treatment on the other hand was found to down-regulate ndhD transcript levels also. Recent studies from our laboratory have demonstrated the involvement of a calcium-dependent protein kinase(CDPK) in the cytokinin-signal transduction pathway associated with the induction of pathogenesis-related proteins (chitinase and β 1-3 modulation of nuclear-encoded CDPK transcripts in response to light and exogenously added phytohormones such as cytokinins and auxin. Towards this end, partial CDPK cDNAs were generated from Cucumis Sativus by RT-PCR using degenerate primers designed based on the conserved regions of the known CDPK proteins available in the database, cloned in pGEM-T and sequenced. Sequence analysis of twenty partial cDNA clones revealed the presence of at least four CDPK isoforms in Cucumis sativus (CuCDPK 1-4). Of the four partial CDPK cDNAs, the tissue-specific expression level of CuCDPK3 was studied using the highly sensitive Taqman Analysis (Quantitative RT-PCR). The results obtained indicate that, in excised dark-grown cucumber cotyledons light and cytokinin were found to up-regulate the levels of CuCDPK3 unlike auxin, which was found to have no significant effect. In cucumber hypocotyls, which had the highest levels of CuCDPK3, light was found to have a down-regulatory effect whereas cytokinin and auxin did not bring about any significant changes in the levels of CuCDPK3. In cucumber root tissue, both light and cytokinin were found to have a down-regulatory effect on the levels of CuCDPK3, unlike auxin. The southern analysis of cucumber genomic DNA revealed a CDPK multi-gene family in cucumber. Since cytokinins have been known to play a role in both etioplast and chloroplast biogenesis and since various groups have recently reported the presence of higher plant homologues of bacterial cell-division protein FtsZ and the requirement of plant nuclear-encoded FtsZs for plastid division, efforts were also made to isolate and to study the expression of cucumber FtsZ in dark-grown cucumber cotyledon tissue treated exogenously with light/phytohormones. Towards this end, a partial FtsZ cDNA was generated from cucumber by RT-PCR using degenerate primers designed based on conserved regions of known plant FtsZ proteins. Results of the Taqman Analysis indicate that cytokinin, unlike auxin, mimics the action of light by increasing the levels of CuFtsZ transcripts in dark-grown cotyledon tissue suggesting the involvement of FtsZ in cytokinin-induced plastid-biogenesis.
147

Study of Ca2+-Mediated Signal Transduction During Embryogenesis In Sandalwood (Santalurm Album L.) And Characterization Of An Early Development-Specific CDPK

Anil, Veena S 10 1900 (has links)
Calcium ion plays a pivotal role as second messenger during signal/response coupling in plant cells (Trewavas, 1999). Elevations of cytosolic Ca2+ occur in plants as a consequence of abiotic and biotic stresses, environmental and hormonal stimuli. However, the molecular mechanism by which changes in cytosolic calcium are sensed and transduced in the plant cell has not been completely elucidated. The detection of Ca2+-binding proteins, especially Ca2+-dependent protein kinases (CDPKs) in plants led to drawing analogy with animal systems wherein the Ca2+-message is perceived and transduced by proteins that bind Ca2+. CDPKs are stimulated by the direct binding of Ca2+ to their endogenous calmodulin (CaM) -like domain (Harper et al, 1991). CDPKs exist as multiple isoforms in a single species, and show tissue-specific and developmentally regulated expression. Furthermore, the diversity among different CDPK isoforms with respect to Ca2+-binding properties, activation, substrate specificity, regulatory mechanisms and other kinetic properties suggest their specialization in the regulation of distinct signaling pathways. These observations therefore have led to the speculation that most of the Ca2+-mediated signal transduction in plants occurs via the mediation of CDPKs (Harmon et al, 2000). Over the last 15 years there has been a dramatic unfolding of information on Ca2+-mediated signaling in plants. Nevertheless, little is known about the environmental/hormonal signals and the signaling events that regulate early plant developmental processes such as embryogenesis, seed development and germination. The present investigation was initiated with the objectives 1) to determine the role of Ca2+ during embryogenesis, 2) to examine the involvement of a CDPK during early developmental processes in sandalwood plant (Santalum album L.) and 3) to purify and biochemically characterize this CDPK. The study initially investigated the possible involvement of calcium-mediated signaling in the induction/regulation of somatic embryogenesis from proembryogenic cells of sandalwood. 45 Ca + uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca2+]cyt of proembryogenic cells in response to culture conditions conducive for embryo development. Sandalwood proembryogenic cell masses (PEMs) were obtained in the callus proliferation medium that contains the auxin 2,4-D. Subculture of PEMs into the embryo differentiation medium which lacks 2,4-D and has higher osmoticum resulted in a 4-fold higher 45Ca2+ incorporation into the symplast. Fura-2 based ratiometric analysis also showed a 10-16- fold increase in the [Ca2+]cyt of PEMs under identical culture conditions, increasing from a resting concentration of 30-50 nM to 650-800 nM. Chelation of exogenous Ca2+ with EGTA arrested such an elevation in [Ca2+]cyt. Exogenous Ca2+ when chelated or deprived also arrested embryo development and inhibited the accumulation of a Ca2+-dependent protein kinase (swCDPK) in embryogenic cultures. However, such culture conditions did not cause cell death as the PEMs continued to proliferate to form larger cell clumps. Culture treatment with W7 reduced embryogenic frequency by 85%, indicating that blockage of Ca2+-mediated signaling pathway(s) involving swCDPK and/or CaM caused inhibition of embryogenesis. These observations suggest a second messenger role for exogenous Ca2+ and the existence of Ca2+-mediated signaling pathway(s) during sandalwood somatic embryogenesis. The detection of a 55 kD protein showing cross reactivity with polyclonal antisoybean CDPK and the detection of Ca2+-dependent protein kinase activity in protein extracts from somatic embryos, prompted investigation on the spatio-temporal accumulation and activity of a CDPK in different developmental stages of sandalwood. Western blot analysis and protein kinase assays identified a Ca2+-dependent protein kinase (swCDPK) of 55 kD in soluble protein extracts of different developmental stages of sandalwood somatic embryos. However, swCDPK was not detected in plantlets regenerated from somatic embryos. swCDPK exhibited differential expression and activity in the developmental stages of sandalwood. Zygotic embryos, endosperm and seedlings showed high accumulation of swCDPK. However, the enzyme was not detected in the soluble proteins of shoots and flowers of sandalwood tree. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages, the enzyme being localized strongly in the storage bodies of the endosperm cells. Interestingly, these storage bodies were thereafter identified as oil bodies, suggesting that a Ca2+-mediated regulation of oil hydrolysis and/or mobilization might be operative during seed germination. swCDPK in the zygotic embryo was found to be inactive during seed dormancy and early stages of germination, indicating a possible post-translational hibition/inactivation of the enzyme during these stages. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation and germination thus suggests involvement of the enzyme in these early developmental processes. In view of the diversity exhibited by members of the CDPK family, characterization of swCDPK, the early development specific CDPK from sandalwood was undertaken. Purification of swCDPK was achieved by chromatography on DEAE-cellulose, hydroxyapatite and Blue-Sepharose. The purified enzyme resolved into a single band on 10 % polyacrylamide gels, both under denaturing and non-denaturing conditions. swCDPK was strictly dependent on Ca2+, K0.5 (apparent binding constant) for Ca2+-activation of substrate phosphorylation activity being 0.7 μM and for autophosphorylation activity —50 nM. Ca2+-dependence for activation, CaM-independence, inhibition by CaM-antagonist (IC50 for W7 = 6 μM, for W5 = 46 μM) and cross-reaction with polyclonal antibodies directed against the CaM-like domain of soybean CDPK, confirmed the presence of an endogenous CaM-like domain in the purified enzyme. Kinetic studies revealed a Km value of 13 mg/mL for histone III-S and a Vmax of 0.1 nmolmin-1rng-1. The enzyme exhibited high specificity for ATP with a Km value of 10 nM. Titration with Ca2+ resulted in enhancement of the intrinsic emission fluorescence of swCDPK and a shift in the λmax emission from tryptophan residues. A reduction in the efficiency of non-radiative energy transfer from tyrosine to tryptophan residues was also observed. These are taken as evidence for the occurrence of Ca2+-induced conformational change in swCDPK. The emission spectral properties of swCDPK in conjunction with Ca2+ levels required for autophosphorylation and substrate phosphorylation help elucidate the possible mode of Ca2+ activation of this enzyme.
148

Regulation of the dorsal-ventral axis in Xenopus embryos by intracellular components of the Wnt pathway /

Yost, Cynthia Haycox. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [90]-109).
149

Protein kinase C-eta (PKC-ē) is required for the expression of the inducible nitric oxide synthase (NOS II) in human monocytic cells : a correlation in transcription between PKC-ē and NOS II in inflammatory arthritides /

Pham, Tram Ngoc Quynh, January 2003 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 217-246.
150

Initial characterization and determination of the molecular mechanism(s) that control transcription of the human PKC epsilon gene in lung cancer cells

Akinyi, Linnet. January 2004 (has links)
Thesis (M.S.)--University of Florida, 2004. / Typescript. Title from title page of source document. Document formatted into pages; contains 52 pages. Includes Vita. Includes bibliographical references.

Page generated in 0.1575 seconds