• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 11
  • 10
  • 2
  • Tagged with
  • 62
  • 62
  • 29
  • 22
  • 16
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Protein NMR Studies of E. Coli IlvN and the Protease-VPg Polyprotein from Sesbania Mosaic Virus

Karanth, N Megha January 2013 (has links) (PDF)
Acetohydroxyacid synthase is a multisubunit enzyme that catalyses the first committed step in the biosynthesis of the branched chain amino acids viz., valine, leucine and isoleucine. In order to understand the structural basis for the observed allosteric feedback inhibition in AHAS, the regulatory subunit of AHAS isozymes I from E. coli was cloned, expressed, purified and the conditions were optimized for solution NMR spectroscopy. IlvN was found to exist as a dimer both in the presence and absence of the feedback inhibitor. Using high-resolution multidimensional, multinuclear NMR experiments, the structure of the dimeric valine-bound 22 kDa IlvN was determined. The ensemble of twenty low energy structures shows a backbone root mean square deviation of 0.73 ± 0.13 Å and a root mean square deviation of 1.16 ± 0.13 Å for all heavy atoms. Furthermore, greater than 98% of the backbone φ, ψ dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map. Each protomer exhibits a βαββαβα topology that is a characteristic feature of the ACT domain fold that is observed in regulatory domains of metabolic enzymes. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR timescale. Important structural properties of the unliganded state were probed by H-D exchange studies by NMR, alkylation studies by mass spectrometry and other biophysical methods. It was observed that the dynamic unliganded IlvN underwent a coil-to-helix transition upon binding the effector molecule and this inherent conformational flexibility was important for activation and valine-binding. A mechanism for allosteric regulation in the AHAS holoenzyme was proposed. Study of the structural and conformational properties of IlvN enabled a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis. Solution structural studies of 32 kDa Protease-VPg (PVPg) from Sesbania mosaic virus (SeMV) Polyprotein processing is a commonly found mechanism in animal and plant viruses, by which more than one functional protein is produced from the same polypeptide chain. In Sesbania Mosaic Virus (SeMV), two polyproteins are expressed that are catalytically cleaved by a serine protease. The VPg protein that is expressed as a part of the polyprotein is an intrinsically disordered protein (by recombinant expression) that binds to various partners to perform several vital functions. The viral protease (Pro), though possessing the necessary catalytic residues and the substrate binding pocket is unable to catalyse the cleavage reactions without the VPg domain fused at the C-terminus. In order to determine the structural basis for the aforementioned activation of protease by VPg I undertook the structural studies of the 32 kDa PVPg domains of SeMV by solution NMR spectroscopy. NMR studies on this protein were a challenge due to the large size and spectral overlap. Using a combination of methods such as deuteration, TROSY-enhanced NMR experiments and selective ‘reverse-labelling’, the sequence specific assignments were completed for ~80% of the backbone and 13C nuclei. NMR studies on mutants such as the C-terminal deletion mutant, I/L/V to A mutants in VPg domain were conducted in order to identify the residues important for aliphatic-aromatic interactions observed in PVPg. Attempts were made to obtain NOE restraints between Pro and VPg domains through ILV labelled samples; however these proved unsuccessful. It was observed that ‘natively unfolded’ VPg possessed both secondary and tertiary structure in PVPg. However, 30 residues at the C-terminus were found to be flexible. Even though atomic-resolution structure could not be determined, the region of interaction between the domains was determined by comparing NMR spectra of Pro and PVPg. The conditions for reconstitution of the Protease-VPg complex by recombinantly expressed Pro and VPg proteins were standardised. These studies lay the foundation for future structural investigations into the Protease-VPg complex.
52

Probing Macromolecular Reactions At Reduced Dimensionality : Mapping Of Sequence Specific And Non-Specific Protein-Ligand lnteractions

Ganguly, Abantika 03 1900 (has links) (PDF)
During the past decade the effects of macromolecular crowding on reaction pathways is gaining in prominence. The stress is to move out of the realms of ideal solution studies and make conceptual modifications that consider non-ideality as a variable in our calculations. In recent years it has been shown that molecular crowding exerts significant effects on all in vivo processes, from DNA conformational changes, protein folding to DNA-protein interactions, enzyme pathways and signalling pathways. Both thermodynamic as well as kinetic parameters vary by orders of magnitude in uncrowded buffer system as compared to those in the crowded cellular milieu. Ignoring these differences will restrict our knowledge of biology to a “model system” with few practical understandings. The recent expansion of the genome database has stimulated a study on numerous previously unknown proteins. This has whetted our thirst to model the cellular determinants in a more comprehensive manner. Intracellular extract would have been the ideal solution to re-create the cellular environment. However, studies conducted in this solution will be contaminated by interference with other biologically active molecule and relevant statistical data cannot be extracted out from it. Recent advances in methodologies to mimic the cellular crowding include use of inert macromolecules to reduce the volume occupancy of target molecules and the use of immobilization techniques to increase the surface density of molecules in a small volumetric region. The use of crowding agents often results in non-specific interaction and side-reactions like aggregation of the target molecules with the crowding agents themselves. Immobilization of one of the interacting partners reduces the probability of aggregation and precipitation of bio-macromolecules by restricting their degrees of freedom. Covalent linkage of molecules on solid support is used extensively in research for creating a homogeneous surface of bound molecules which can be interrogated for their reactivity. However, when it comes to biomolecules, direct immobilization on solid support or use of organic linkers often results in denaturation. The use of bio-affinity immobilization techniques can help us overcome this problem. Since mild conditions are needed to regenerate such a surface, it finds universal applicability as bio-memory chips. This thesis focuses on our attempts to design a physiologically viable immobilization technique for following rotein-protein/protein-DNA interactions. The work explores the mechanism for biological interactions related to transcription process in E. coli. Chapter 1 deals with the literary survey of the importance and effects of molecular crowding on biological reactions. It gives a brief history of the efforts been made so far by experimentalists, to mimic macromolecular crowding and the methods applied. The chapter tries to project an all-round perspective of the pros and cons of different immobilization techniques as a means to achieve a high surface density of molecules and the advancements so far. Chapter 2 deals with the detailed technicality and applicability of the Langmuir-Blodgett method. It discusses the rationale behind our developing this technique as an alternate means of bio-affinity immobilization, under physiologically compatible conditions. It then goes on to describe our efforts to follow the sequence-specific and sequential assembly process of a functional RNA polymerase enzyme with one immobilized partner and also explore the role of omega subunit of RNAP in the reconstitution pathway. This chapter uses the assembly process of a multi-subunit enzyme to evaluate the efficiency of the LB system as a universal two-dimensional scaffold to follow sequence-specific protein-ligand interaction. Chapter 3 discusses the application of LB technique to quantitatively evaluate the kinetics and thermodynamics of promoter-RNA polymerase interaction under conditions of reduced dimensionality. Here, we follow the interaction of T7A1 phage promoter with Escherichia coli RNA polymerase using our Langmuir-Blodgett technique. The changes in mechanistic pathway and trapping of kinetic intermediates are discussed in detail due to the imposed restriction in the degrees of freedom of the system. The sensitivity of this detection method is compared vis-a-vis conventional immobilization methods like SPR. This chapter firmly establishes the universal application of LB technique as a means to emulate molecular crowding and as a sensitive assay for studying the effects of such crowding on vital biological reaction pathway. Chapter 4 describes the mechanistic pathway for the physical binding of MsDps1 protein with long dsDNA in order to physically protect DNA during oxidative stress. The chapter describes in detail the mechanism of physical sequestering of non-specific DNA strands and compaction of the genome under conditions where a kinetic bottleneck has been applied. The data obtained is compared with results obtained in the previous chapter for the sequence-specific DNA-protein interaction in order to understand the difference in recognition process between regulatory and structural proteins binding to DNA. Chapter 5 deals with the evaluation of the σ-competition model in E. coli for three different sigma factors (all belonging to the σ-70 family). Here again, we have evaluated the kinetic and thermodynamic parameters governing the binding of core RNAP with its different sigma factors (σ70, σ32and σ38) and performed a comparative study for the binding of each sigma factor to its core using two different non-homogeneous immobilization techniques. The data has been analyzed globally to resolve the discrepancies associated with establishing the relative affinity of the different sigma factors for the same core RNA polymerase under physiological conditions. Chapter 6 summarizes the work presented in this thesis. In the Appendix section we have followed the unzipping of promoter DNA sequence using Optical Tweezers in an attempt to follow the temporal fluctuations occurring in biological reactions in real time and at a single molecule level.
53

STATISTICAL PHYSICS OF CELL ADHESION COMPLEXES AND MACHINE LEARNING

Adhikari, Shishir Raj 26 August 2019 (has links)
No description available.
54

Structure-Based Computer Aided Drug Design and Analysis for Different Disease Targets

Kumari, Vandana 13 September 2011 (has links)
No description available.
55

Touching the Essence of Life : Haptic Virtual Proteins for Learning

Bivall, Petter January 2010 (has links)
This dissertation presents research in the development and use of a multi-modal visual and haptic virtual model in higher education. The model, named Chemical Force Feedback (CFF), represents molecular recognition through the example of protein-ligand docking, and enables students to simultaneously see and feel representations of the protein and ligand molecules and their force interactions. The research efforts have been divided between educational research aspects and development of haptic feedback techniques. The CFF model was evaluated in situ through multiple data-collections in a university course on molecular interactions. To isolate possible influences of haptics on learning, half of the students ran CFF with haptics, and the others used the equipment with force feedback disabled. Pre- and post-tests showed a significant learning gain for all students. A particular influence of haptics was found on students reasoning, discovered through an open-ended written probe where students' responses contained elaborate descriptions of the molecular recognition process. Students' interactions with the system were analyzed using customized information visualization tools. Analysis revealed differences between the groups, for example, in their use of visual representations on offer, and in how they moved the ligand molecule. Differences in representational and interactive behaviours showed relationships with aspects of the learning outcomes. The CFF model was improved in an iterative evaluation and development process. A focus was placed on force model design, where one significant challenge was in conveying information from data with large force differences, ranging from very weak interactions to extreme forces generated when atoms collide. Therefore, a History Dependent Transfer Function (HDTF) was designed which adapts the translation of forces derived from the data to output forces according to the properties of the recently derived forces. Evaluation revealed that the HDTF improves the ability to haptically detect features in volumetric data with large force ranges. To further enable force models with high fidelity, an investigation was conducted to determine the perceptual Just Noticeable Difference (JND) in force for detection of interfaces between features in volumetric data. Results showed that JNDs vary depending on the magnitude of the forces in the volume and depending on where in the workspace the data is presented.
56

Stratagems for effective function evaluation in computational chemistry

Skone, Gwyn S. January 2010 (has links)
In recent years, the potential benefits of high-throughput virtual screening to the drug discovery community have been recognized, bringing an increase in the number of tools developed for this purpose. These programs have to process large quantities of data, searching for an optimal solution in a vast combinatorial range. This is particularly the case for protein-ligand docking, since proteins are sophisticated structures with complicated interactions for which either molecule might reshape itself. Even the very limited flexibility model to be considered here, using ligand conformation ensembles, requires six dimensions of exploration - three translations and three rotations - per rigid conformation. The functions for evaluating pose suitability can also be complex to calculate. Consequently, the programs being written for these biochemical simulations are extremely resource-intensive. This work introduces a pure computer science approach to the field, developing techniques to improve the effectiveness of such tools. Their architecture is generalized to an abstract pattern of nested layers for discussion, covering scoring functions, search methods, and screening overall. Based on this, new stratagems for molecular docking software design are described, including lazy or partial evaluation, geometric analysis, and parallel processing implementation. In addition, a range of novel algorithms are presented for applications such as active site detection with linear complexity (PIES) and small molecule shape description (PASTRY) for pre-alignment of ligands. The various stratagems are assessed individually and in combination, using several modified versions of an existing docking program, to demonstrate their benefit to virtual screening in practical contexts. In particular, the importance of appropriate precision in calculations is highlighted.
57

Structure-Function Correlations In Aminoacyl tRNA Synthetases Through The Dynamics Of Structure Network

Ghosh, Amit 07 1900 (has links)
Aminoacyl-tRNA synthetases (aaRSs) are at the center of the question of the origin of life and are essential proteins found in all living organisms. AARSs arose early in evolution to interpret genetic code and are believed to be a group of ancient proteins. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. These enzymes ensure the fidelity of transfer of genetic information from the DNA to the protein. They are responsible for attaching amino acid residues to their cognate tRNA molecules by virtue of matching the nucleotide triplet, which is the first step in the protein synthesis. The translation of genetic code into protein sequence is mediated by tRNA, which accurately picks up the cognate amino acids. The attachment of the cognate amino acid to tRNA is catalyzed by aaRSs, which have binding sites for the anticodon region of tRNA and for the amino acid to be attached. The two binding sites are separated by ≈ 76 Å and experiments have shown that the communication does not go through tRNA (Gale et al., 1996). The problem addressed here is how the information of binding of tRNA anticodon near the anticodon binding site is communicated to the active site through the protein structure. These enzymes are modular with distinct domains on which extensive kinetic and mutational experiments and supported by structural data are available, highlighting the role of inter-domain communication (Alexander and Schimmel, 2001). Hence these proteins present themselves as excellent systems for in-silico studies. Various methods involved for the construction of protein structure networks are well established and analyzed in a variety of ways to gain insights into different aspects of protein structure, stability and function (Kannan and Vishveshwara, 1999; Brinda and Vishveshwara, 2005). In the present study, we have incorporated network parameters for the analysis of molecular dynamics (MD) simulation data, representing the global dynamic behavior of protein in a more elegant way. MD simulations have been performed on the available (and modeled) structures of aaRSs bound to a variety of ligands, and the protein structure networks (PSN) of non-covalent interactions have been characterized in dynamical equilibrium. The changes in the structure networks are used to understand the mode of communication, and the paths between the two sites of interest identified by the analysis of the shortest path. The allosteric concept has played a key role in understanding the biological functions of aaRSs. The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. We have explored the conformational changes in the complexes of aaRSs through novel parameters such as cliques and communities (Palla et al., 2005), which identify the rigid regions in the protein structure networks (PSNs) constructed from the non-covalent interactions of amino acid side chains. The thesis consists of 7 chapters. The first chapter constitutes the survey of the literature and also provides suitable background for this study. The aims of the thesis are presented in this chapter. Chapter 2 describes various techniques employed and the new techniques developed for the analysis of PSNs. It includes a brief description of well -known methods of molecular dynamics simulations, essential dynamics, and cross correlation maps. The method used for the construction of graphs and networks is also described in detail. The incorporation of network parameters for the analysis of MD simulation data are done for the first time and has been applied on a well studied protein lysozyme, as described in chapter 3. Chapter 3 focuses on the dynamical behavior of protein structure networks, examined by considering the example of T4-lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein with explicit water molecules at 300K and at higher temperatures (400K, 500K) respectively. Three simulations of 10ns duration have been performed at 500K to ensure the validity of the results. The snapshots of the protein structure from the simulations are represented as Protein Structure Networks (PSN) of non-covalent interactions. The strength of the non-covalent interaction is evaluated and used as an important criterion in the construction of edges. The profiles of the network parameters such as the degree distribution and the size of the largest cluster (giant component) have been examined as a function of interaction strength (Ghosh et al., 2007). We observe a critical strength of interaction (Icritical) at which there is a transition in the size of the largest cluster. Although the transition profiles at all temperatures show behavior similar to those found in the crystal structures, the 500K simulations show that the non-native structures have lower Icritical values. Based on the interactions evaluated at Icritical value, the folding/unfolding transition region has been identified from the 500K simulation trajectories. Furthermore, the residues in the largest cluster obtained at interaction strength higher than Icritical have been identified to be important for folding. Thus, the compositions of the top largest clusters in the 500K simulations have been monitored to understand the dynamical processes such as folding/unfolding and domain formation/disruption. The results correlate well with experimental findings. In addition, the highly connected residues in the network have been identified from the 300K and 400K simulations and have been correlated with the protein stability as determined from mutation experiments. Based on these analyses, certain residues, on which experimental data is not available, have been predicted to be important for the folding and the stability of the protein. The method can also be employed as a valuable tool in the analysis of MD simulation data, since it captures the details at a global level, which may elude conventional pair-wise interaction analysis. After standardizing the concept of dynamical network analysis using Lysozyme, it was applied to our system of interest, the aaRSs. The investigations carried out on Methionyl-tRNA synthetases (MetRS) are presented in chapter 4. This chapter is divided into three parts: Chapter 4A deals with the introduction to aminoacyl tRNA synthetases (aaRS). Classification and functional insights of aaRSs obtained through various studies are presented. Chapter 4B is again divided into parts: BI and BII. Chapter 4BI elucidates a new technique developed for finding communication pathways essential for proper functioning of aaRS. The enzymes of the family of tRNA synthetases perform their functions with high precision, by synchronously recognizing the anticodon region and the amino acylation region, which is separated by about 70Å in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modelled the structure of E.coli Methionyl tRNA synthetase, which is complexed with tRNA and activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross correlations between the residues in MetRS. Furthermore, the network analysis on these structures has been carried out to elucidate the paths of communication between the aminoacyl activation site and the anticodon recognition site (Ghosh and Vishveshwara, 2007). This study has provided the detailed paths of communication, which are consistent with experimental results. A similar study on the (MetRS + activated methionine) and (MetRS+tRNA) complexes along with ligand free-native enzyme has also been carried out. A comparison of the paths derived from the four simulations has clearly shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The method developed here could also be utilized to investigate any protein system where the function takes place through long distance communication. The details of the method of our investigation and the biological implications of the results are presented in this chapter. In chapter 4BII, we have explored the conformational changes in the complexes of E.coli Methionyl tRNA synthetase (MetRS) through novel parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs). The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. MetRS belongs to the aminoacyl tRNA Synthetases (aaRSs) family that play a crucial role in initiating the protein synthesis process. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the inter-domain communication in detail. Additionally, the characterization of conformational changes in terms of cliques/communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in clique/communities are strikingly different from those that take part in long-range communication. The cliques/communities evaluated here for the first time on PSNs have beautifully captured the local geometries in their detail within the framework of global topology. Here the allosteric effect is revealed at the residue level by identifying the important residues specific for structural rigidity and functional flexibility in MetRS. Chapter 4C focuses on MD simulations of Methionyl tRNA synthetase (AmetRS) from a thermophilic bacterium, Aquifex aeolicus. As describe in Chapter 4B, we have explored the communication pathways between the anticodon binding region and the aminoacylation site, and the conformational changes in the complexes through cliques and communities. The two MetRSs from E.coli and Aquifex aeolicus are structurally and sequentially very close to each other. But the communication pathways between anticodon binding region and the aminoacylation site from A. aeolicus have differed significantly with the communication paths obtained from E.coli. The residue composition and cliques/communities structure participating in communication are not similar in the MetRSs of both these organisms. Furthermore the formation of cliques/communities and hubs in the communication paths are more in A. aeolicus compared to E.coli. The participation of structurally homologous linker peptide, essential for orienting the two domains for efficient communication is same in both the organisms although, the residues composition near domain interface regions including the linker peptide is different. Thus, the diversity in the functioning of two different MetRS has been brought out, by comparing the E.coli and Aquifex aeolicus systems. Protein Structure network analysis of MD simulated trajectories of various ligand bound complexes of Escherichia coli Cysteinyl-tRNA synthetase (CysRS) have been discussed in Chapter 5. The modeling of the complex is done by docking the ligand CysAMP into the tRNA bound structure of E.coli Cysteinyl tRNA synthetase. Molecular dynamics simulations have been performed on the modeled structure and the paths of communications were evaluated using a similar method as used in finding communication paths for MetRS enzymes. Compared to MetRS the evaluation of communication paths in CysRS is complicated due to presence of both direct and indirect readouts. The direct and indirect readouts (DR/IR) involve interaction of protein residues with base-specific functional group and sugar-phosphate backbone of nucleic acids respectively. Two paths of communication between the anticodon region and the activation site has been identified by combining the cross correlation information with the protein structure network constructed on the basis of non-covalent interaction. The complete paths include DR/IR interactions with tRNA. Cliques/communities of non-covalently interacting residues imparting structural rigidity are present along the paths. The reduction of cooperative fluctuation due to the presence of community is compensated by IR/DR interaction and thus plays a crucial role in communication of CysRS. Chapter 6 focuses on free energy calculations of aminoacyl tRNA synthetases with various ligands. The free energy contributions to the binding of the substrates are calculated using a method called MM-PBSA (Massova and Kollman, 2000). The binding free energies were calculated as the difference between the free energy of the enzyme-ligand complex, and the free ligand and protein. The ligand unbinding energy values obtained from the umbrella sampling MD correlates well with the ligand binding energies obtained from MM-PBSA method. Furthermore the essential dynamics was captured from MD simulations trajectories performed on E.coli MetRS, A. aeolius MetRS and E.coli CysRS in terms of the eigenvalues. The top two modes account for more than 50% of the motion in essential space for systems E.coli MetRS, A. aeolius MetRS and E.coli CysRS. Population distribution of protein conformation states are looked at the essential plane defined by the two principal components with highest eigenvalues. This shows how aaRSs existed as a population of conformational states and the variation with the addition of ligands. The population of conformational states is converted into Free energy contour surface. From free energy surfaces, it is evident that the E.coli tRNAMet bound MetRS conformational fluctuations are more, which attributes to less rigidity in the complex. Whereas E.coli tRNACys bound CysRS conformational fluctuations are less and this is reflected in the increase in rigidity of the complex as confirmed by its entropic contribution. Future directions have been discussed in the final chapter (Chapter 7). Specifically, it deals with the ab-initio QM/MM study of the enzymatic reaction involved in the active site of E.coli Methionyl tRNA synthetase. To achieve this, two softwares are integrated: the Quantum Mechanics (QM) part includes small ligands and the Molecular Mechanics (MM) part as protein MetRS are handled using CPMD and Gromacs respectively. The inputs for two reactions pathways are prepared. First reaction involves cyclization reaction of homocysteine in the active site of MetRS and the second reaction deals with charging of methionine in the presence of ATP and magnesium ion. These simulations require very high power computing systems and also time of computation is also very large. With the available computational power we could simulate up to 10ps and it is insufficient for analysis. The future direction will involve the simulations of these systems for longer time, followed by the analysis for reaction pathways.
58

Deciphering Structure-Function Relationships in a Two-Subunit-Type GMP Synthetase by Solution NMR Spectroscopy

Ali, Rustam January 2013 (has links) (PDF)
The guanosine monophosphate synthetase (GMPS) is a class I glutamine amidotransferase, involved in the de-novo purine nucleotide biosynthesis. The enzyme catalyzes the biochemical transformation of xantosine (XMP) into guanosine monophosphate (GMP) in presence of ATP, Mg2+ and glutamine. All GMPSs consist of two catalytic sites 1) for GATase activity 2) for the ATPPase activity. The two catalytic sites may be housed in the same polypeptide (two-domain-type) or in separate polypeptides (two-subunit-type). Most of the studies have been performed on two-domain-type GMPSs, while only one study has been reported from two-subunit-type GMPS (Maruoka et al. 2009). The two-subunit-type GMPS presents an example where the component reactions of a single enzymatic reaction are carried out by two distinct subunits. In order to get better understanding of structural aspects and mechanistic principle that governs the GMPS activity in two-subunit-type GMPSs, we initiated the study by taking GMPS of Methanocaldococcus jannaschii as a model system. The GMPS of M. jannaschii (Mj) is a two-subunit-type protein. The GATase subunit catalyzes the hydrolysis of glutamine to produce glutamate and ammonia. The ATPPase subunit catalyses the amination of XMP to produce GMP using the ammonia generated in GATase subunit. Since the two component reactions are catalysed by two separate subunits and are coupled in the way that product of one reaction (ammonia) acts as a nucleophile in the second reaction. The cross-talk between these two subunits in order to maximise the efficiency of overall GMPS warrants investigation. The GATase activity is tightly regulated by the interaction with ATPPase domain/subunit, in all GMPS except in the case of P. falciparum. This interaction is facilitated by substrate binding to the ATPPase domain/subunit. Though, the conditions for the interaction between two subunits is known in a two-subunit-type GMP synthetase from P. horikoshii, the structural basis of substrate dependent interaction is not known. As a first step to understand the structural basis of interaction between the Mj GATase and Mj ATPPase subunits, we have determined the structure of Mj GATase (21 kDa) subunit using high resolution, multinuclear, multidimensional NMR spectroscopy. Sequence specific resonance assignments were obtained through analysis of various 2D and 3D hetero-nuclear multidimensional NMR experiments. NMR based distance restraints were obtained from assignment of correlations observed in NOE based experiments. Data were acquired on isotopically enriched samples of Mj GATase. The structure of Mj GATase (2lxn) was solved by using cyana-3.0 using NMR based restraints as input for the structure calculation. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35±0.06 Å for backbone atoms and 0.8±0.06 Å for all heavy atoms. Attempts were also made to obtain assignments for the 69.6 kDa dimeric ATPPase subunit. Partial assignments have been obtained for this subunit. The GATase subunit is catalytically inactive. So far, there has been only one published report on a two-subunit-type GMPS from P. horikashii. The study has shown that the catalytic activity of GATase is regulated by the GATase-ATPPase interaction which is facilitated by the substrate binding to the ATPPase subunit. For the first time, we have provided the structural basis of interaction between GATase-ATPPase (112 kDa) in a two-subunit-type GMPS. Observed line width changes were used to identify residues in GATase residues that are involved in the Mj GATase-ATPPase interaction. Our data provides a possible explanation for conformational changes observed in the Mj GATase subunit upon GATase-ATPPase interaction that lead to GATase activation. Ammonia is generated in GATase subunit and is very reactive and labile. Thus, the faithful transportation of ammonia from GATase to ATPPase subunit is very crucial for optimal GMPS activity. Till date, a PDB query for GMPS retrieves only one structure which belongs to two-subunit-type GMPS, where authors have determined the structures of GATase and ATPPase subunits separately. However, the structure of holo-GMPS is not determined yet. Using interface information from experimental data and HADDOCK, we have constructed a model for the holo-GMPS from M. jannaschii. A possible ammonia channel has been deduced using the programs MOLE 2.0 and CAVER 2.0. This ammonia channel has a length of 46 Å, which is well within the range of the lengths calculated for similar channels in other glutamine amidotransferase. It had been suggested earlier that in addition to the magnesium required for charge stabilization of ATP, additional binding sites were present on GMPS. The effect of excess Mg2+ requirement on the GMPS activity has been studied in two-domain-type GMPS. However, the interaction between GATase and Mg2+ has been not investigated in any GMPS. This prompted us to investigate the effect of MgCl2 on Mj GATase subunit. For the first time, using chemical shift perturbation, we have established interaction between Mj GATase and Mg2+. The dissociation constant (Kd) of the Mj GATase-Mg2+ interaction was determined. The Kd value was found to be 1 mM, which indicates a very weak interaction. The substrate of the GATase subunit is glutamine. The condition of the hydrolysis of the glutamine is known in GMPS. However, the binding of the glutamine and associated conformational changes in GATase have been not studied in GMPS. Furthermore, till date there is no structure available for the glutamine bound GMPS/GATase. Using isotope edited one dimensional and two-dimensional NMR spectroscopy; we have shown that the Mj GATase catalytic residues are not in a compatible conformation to bind with glutamine. Thus, a conformational change in Mj GATase subunit is a pre-requisite condition for the binding of glutamine. These conformational changes are brought by the Mj GATase-ATPPase interaction.
59

Probing Ligand Induced Perturbations In Protien Structure Networks : Physico-Chemical Insights From MD Simulations And Graph Theory

Bhattacharyya, Moitrayee 06 1900 (has links) (PDF)
The fidelity of biological processes and reactions, inspite of the widespread diversity, is programmed by highly specific physico-chemical principles. This underlines our basic understanding of different interesting phenomena of biological relevance, ranging from enzyme specificity to allosteric communication, from selection of fold to structural organization / states of oligomerization, from half-sites-reactivity to reshuffling of the conformational free energy landscape, encompassing the dogma of sequence-structure dynamics-function of macromolecules. The role of striking an optimal balance between rigidity and flexibility in macromolecular 3D structural organisation is yet another concept that needs attention from the functional perspective. Needless to say that the variety of protein structures and conformations naturally leads to the diversity of their function and consequently many other biological functions in general. Classical models of allostery like the ‘MWC model’ or the ‘KNF model’ and the more recently proposed ‘population shift model’ have advanced our understanding of the underlying principles of long range signal transfer in macromolecules. Extensive studies have also reported the importance of the fold selection and 3D structural organisation in the context of macromolecular function. Also ligand induced conformational changes in macromolecules, both subtle and drastic, forms the basis for controlling several biological processes in an ordered manner by re-organizing the free energy landscape. The above mentioned biological phenomena have been observed from several different biochemical and biophysical approaches. Although these processes may often seem independent of each other and are associated with regulation of specialized functions in macromolecules, it is worthwhile to investigate if they share any commonality or interdependence at the detailed atomic level of the 3D structural organisation. So the nagging question is, do these diverse biological processes have a unifying theme, when probed at a level that takes into account even subtle re-orchestrations of the interactions and energetics at the protein/nucleic acid side-chain level. This is a complex problem to address and here we have made attempts to examine this problem using computational tools. Two methods have been extensively applied: Molecular Dynamics (MD) simulations and network theory and related parameters. Network theory has been extensively used in the past in several studies, ranging from analysis of social networks to systems level networks in biology (e.g., metabolic networks) and have also found applications in the varied fields of physics, economics, cartography and psychology. More recently, this concept has been applied to study the intricate details of the structural organisation in proteins, providing a local view of molecular interactions from a global perspective. On the other hand, MD simulations capture the dynamics of interactions and the conformational space associated with a given state (e.g., different ligand-bound states) of the macromolecule. The unison of these two methods enables the detection and investigation of the energetic and geometric re-arrangements of the 3D structural organisation of macromolecule/macromolecular complexes from a dynamical or ensemble perspective and this has been one of the thrust areas of the current study. So we not only correlate structure and functions in terms of subtle changes in interactions but also bring in conformational dynamics into the picture by studying such changes along the MD ensemble. The focus was to identify the subtle rearrangements of interactions between non-covalently interacting partners in proteins and the interacting nucleic acids. We propose that these rearrangements in interactions between residues (amino acids in proteins, nucleic acids in RNA/DNA) form the common basis for different biological phenomena which regulates several apparently unrelated processes in biology. Broadly, the major goal of this work is to elucidate the physico-chemical principles underlying some of the important biological phenomena, such as allosteric communication, ligand induced modulation of rigidity/flexibility, half-sites-reactivity and so on, in molecular details. We have investigated several proteins, protein-RNA/DNA complexes to formulate general methodologies to address these questions from a molecular perspective. In the process we have also specifically illuminated upon the mechanistic aspects of the aminoacylation reaction by aminoacyl-tRNA synthetases like tryptophanyl and pyrrolysyl tRNA synthetase, structural details related to an enzyme catalyzed reaction that influences the process of quorum sensing in bacteria. Further, we have also examined the ‘dynamic allosterism’ that manipulates the activity of MutS, a prominent component of the DNA bp ‘mismatch repair’ machinery. Additionally, our protein structure network (PSN) based studies on a dataset of Rossmann fold containing proteins have provided insights into the structural signatures that drive the adoption of a fold from a repertoire of diverse sequences. Ligand induced percolations distant from the active sites, which may be of functional relevance have also been probed, in the context of the S1A family of serine proteases. In the course of our investigation, we have borrowed several concepts of network parameters from social network analysis and have developed new concepts. The Introduction (Chapter-1) summarizes the relevant literature and lays down a suitable background for the subsequent chapters in the thesis. The major questions addressed and the main goal of this thesis are described to set an appropriate stage for the detailed discussions. The methodologies involved are discussed in Chapter-2. Chapter-3 deals with a protein, LuxS that is involved in the bacterial quorum sensing; the first part of the chapter describes the application of network analysis on the static structures of several LuxS proteins from different organisms and the second part of this chapter describes the application of a dynamic network approach to analyze the MD trajectories of H.pylori LuxS. Chapter-4 focuses on the investigation of human tryptophanyl-tRNA synthetase (hTrpRS), with an emphasis to identify ligand induced subtle conformational changes in terms of the alternation of rigidity/flexibility at different sites and the re-organisation of the free energy landscape. Chapter-5 presents a novel application of a quantum clustering (QC) technique, popular in the fields of pattern recognition, to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. The protein structure network (PSN) in the earlier studies were constituted on the basis of geometric interactions. In Chapters 6 and 7, we describe the networks (proteins+nucleic acids) using interaction energy as edges, thus incorporating the detailed chemistry in terms of an energy-weighted complex network. Chapter-6 describes an application of the energy weighted network formalism to probe allosteric communication in D.hafniense pyrrolysyl-tRNA synthetase. The methodology developed for in-depth study of ligand induced changes in DhPylRS has been adopted to the protein MutS, the first ‘check-point protein’ for DNA base pair (bp) mismatch repair. In Chapter-7, we describe the network analysis and the biological insights derived from this study (the work is done in collaboration with Prof. David Beveridge and Dr. Susan Pieniazek). Chapter-8 describes the application of a network approach to capture the ligand-induced subtle global changes in protein structures, using a dataset of high resolution structures from the S1A family of serine proteases. Chapter-9 deals with probing the structural rationale behind diverse sequences adopting the same fold with the NAD(P)-binding Rossmann fold as a case study. Future directions are discussed in the final chapter of the thesis (Chapter-10).
60

Recherche et caractérisation par dynamique moléculaire d'états intermédiaires pour la complexation entre la protéine FKBP12 et des ligands de haute affinité / Study of building intermediate states between FKBP12 and high-affinity ligands by molecular dynamics simulations

Olivieri, Lilian 04 July 2012 (has links)
FKBP12 est une protéine ubiquitaire, principalement cytosolique, qui est au carrefour de plusieurs voies signalétiques. Son abondance naturelle dans les tissus nerveux peut être reliée à son implication dans les maladies neurodégénératives telles que les maladies d'Alzheimer et de Parkinson ainsi que dans les neuropathies périphériques et diabétiques ou dans des blessures des cordons spinaux. De nombreuses études ont montré que des molécules exogènes (ligands) venant se fixer sur cette protéine permettent la régénération d'un grand nombre de connexions neuronales endommagées. Une difficulté provient cependant du fait que, pour un ligand donné, il n'existe aucune relation claire entre sa structure et sa capacité de liaison à FKBP12. Notre étude vise ainsi à rationaliser la relation entre la structure d'un ligand et son affinité pour cette protéine. Deux complexes modèles, formés entre FKBP12 et chacun des deux ligands 8 et 308, ont été utilisés. Ces deux ligands de haute affinité ont des structures différentes. Notre travail s'est appuyé sur des simulations de dynamique moléculaire pour caractériser l'état intermédiaire qui est formé transitoirement lors du processus de complexation entre la protéine et son ligand. Dans cet état particulier, l'identification des interactions naissantes entre les partenaires a permis (i) de comprendre l'implication des différentes parties du ligand dans le mécanisme de reconnaissance avec FKBP12 et (ii) de rationaliser les affinités de certains ligands apparentés. / FKBP12 is an ubiquitous, mostly cytosolic, protein found at the crossroads of several signaling pathways. Its natural abundance in the nervous tissues can be related to its implication in neurodegenerative diseases like Alzheimer's and Parkinson's as well as in peripheral neuropathies and diabetes or in injuries of the spinal cords. Several studies have demonstrated that exogenous molecules (ligands) that can bind to FKBP12 allow the regeneration of many damaged neuron connections. However, there is no clear relationship between the structure of a ligand and its ability to bind to FKBP12. Our study aims at rationalizing the relationship between the structure of a ligand and its affinity to FKBP12. Two model complexes, formed between FKBP12 and each of the two high-affinity ligands 8 and 308, were studied. These two ligands are structurally different. We used molecular dynamics simulations to characterize the intermediate state that is transiently formed during the binding process between the protein and its ligand. In this state, the analysis of the nascent interactions allowed (i) to unravel the role played by the various ligand moieties in the recognition process with FKBP12 and (ii) to rationalize the affinities of related ligands.

Page generated in 0.1929 seconds