Spelling suggestions: "subject:"2proteins -- conformation."" "subject:"2proteins -- konformation.""
31 |
Critical assessment of predicted interactions at atomic resolutionMendez Giraldez, Raul 21 September 2007 (has links)
Molecular Biology has allowed the characterization and manipulation of the molecules of life in the wet lab. Also the structures of those macromolecules are being continuously elucidated. During the last decades of the past century, there was an increasing interest to study how the different genes are organized into different organisms (‘genomes’) and how those genes are expressed into proteins to achieve their functions. Currently the sequences for many genes over several genomes have been determined. In parallel, the efforts to have the structure of the proteins coded by those genes go on. However it is experimentally much harder to obtain the structure of a protein, rather than just its sequence. For this reason, the number of protein structures available in databases is an order of magnitude or so lower than protein sequences. Furthermore, in order to understand how living organisms work at molecular level we need the information about the interaction of those proteins. Elucidating the structure of protein macromolecular assemblies is still more difficult. To that end, the use of computers to predict the structure of these complexes has gained interest over the last decades.<p>The main subject of this thesis is the evaluation of current available computational methods to predict protein – protein interactions and build an atomic model of the complex. The core of the thesis is the evaluation protocol I have developed at Service de Conformation des Macromolécules Biologiques et de Bioinformatique, Université Libre de Bruxelles, and its computer implementation. This method has been massively used to evaluate the results on blind protein – protein interaction prediction in the context of the world-wide experiment CAPRI, which have been thoroughly reviewed in several publications [1-3]. In this experiment the structure of a protein complex (‘the target’) had to be modeled starting from the coordinates of the isolated molecules, prior to the release of the structure of the complex (this is commonly referred as ‘docking’).<p>The assessment protocol let us compute some parameters to rank docking models according to their quality, into 3 main categories: ‘Highly Accurate’, ‘Medium Accurate’, ‘Acceptable’ and ‘Incorrect’. The efficiency of our evaluation and ranking is clearly shown, even for borderline cases between categories. The correlation of the ranking parameters is analyzed further. In the same section where the evaluation protocol is presented, the ranking participants give to their predictions is also studied, since often, good solutions are not easily recognized among the pool of computer generated decoys.<p>An overview of the CAPRI results made per target structure and per participant regarding the computational method they used and the difficulty of the complex. Also in CAPRI there is a new ongoing experiment about scoring previously and anonymously generated models by other participants (the ‘Scoring’ experiment). Its promising results are also analyzed, in respect of the original CAPRI experiment. The Scoring experiment was a step towards the use of combine methods to predict the structure of protein – protein complexes. We discuss here its possible application to predict the structure of protein complexes, from a clustering study on the different results.<p>In the last chapter of the thesis, I present the preliminary results of an ongoing study on the conformational changes in protein structures upon complexation, as those rearrangements pose serious limitations to current computational methods predicting the structure protein complexes. Protein structures are classified according to the magnitude of its conformational re-arrangement and the involvement of interfaces and particular secondary structure elements is discussed. At the end of the chapter, some guidelines and future work is proposed to complete the survey. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
32 |
Probing Ligand Induced Perturbations In Protien Structure Networks : Physico-Chemical Insights From MD Simulations And Graph TheoryBhattacharyya, Moitrayee 06 1900 (has links) (PDF)
The fidelity of biological processes and reactions, inspite of the widespread diversity, is programmed by highly specific physico-chemical principles. This underlines our basic understanding of different interesting phenomena of biological relevance, ranging from enzyme specificity to allosteric communication, from selection of fold to structural organization / states of oligomerization, from half-sites-reactivity to reshuffling of the conformational free energy landscape, encompassing the dogma of sequence-structure dynamics-function of macromolecules. The role of striking an optimal balance between rigidity and flexibility in macromolecular 3D structural organisation is yet another concept that needs attention from the functional perspective. Needless to say that the variety of protein structures and conformations naturally leads to the diversity of their function and consequently many other biological functions in general. Classical models of allostery like the ‘MWC model’ or the ‘KNF model’ and the more recently proposed ‘population shift model’ have advanced our understanding of the underlying principles of long range signal transfer in macromolecules. Extensive studies have also reported the importance of the fold selection and 3D structural organisation in the context of macromolecular function. Also ligand induced conformational changes in macromolecules, both subtle and drastic, forms the basis for controlling several biological processes in an ordered manner by re-organizing the free energy landscape.
The above mentioned biological phenomena have been observed from several different biochemical and biophysical approaches. Although these processes may often seem independent of each other and are associated with regulation of specialized functions in macromolecules, it is worthwhile to investigate if they share any commonality or interdependence at the detailed atomic level of the 3D structural organisation. So the nagging question is, do these diverse biological processes have a unifying theme, when probed at a level that takes into account even subtle re-orchestrations of the interactions and energetics at the protein/nucleic acid side-chain level. This is a complex problem to address and here we have made attempts to examine this problem using computational tools. Two methods have been extensively applied: Molecular Dynamics (MD) simulations and network theory and related parameters. Network theory has been extensively used in the past in several studies, ranging from analysis of social networks to systems level networks in biology (e.g., metabolic networks) and have also found applications in the varied fields of physics, economics, cartography and psychology. More recently, this concept has been applied to study the intricate details of the structural organisation in proteins, providing a local view of molecular interactions from a global perspective. On the other hand, MD simulations capture the dynamics of interactions and the conformational space associated with a given state (e.g., different ligand-bound states) of the macromolecule. The unison of these two methods enables the detection and investigation of the energetic and geometric re-arrangements of the 3D structural organisation of macromolecule/macromolecular complexes from a dynamical or ensemble perspective and this has been one of the thrust areas of the current study. So we not only correlate structure and functions in terms of subtle changes in interactions but also bring in conformational dynamics into the picture by studying such changes along the MD ensemble.
The focus was to identify the subtle rearrangements of interactions between non-covalently interacting partners in proteins and the interacting nucleic acids. We propose that these rearrangements in interactions between residues (amino acids in proteins, nucleic acids in RNA/DNA) form the common basis for different biological phenomena which regulates several apparently unrelated processes in biology. Broadly, the major goal of this work is to elucidate the physico-chemical principles underlying some of the important biological phenomena, such as allosteric communication, ligand induced modulation of rigidity/flexibility, half-sites-reactivity and so on, in molecular details. We have investigated several proteins, protein-RNA/DNA complexes to formulate general methodologies to address these questions from a molecular perspective. In the process we have also specifically illuminated upon the mechanistic aspects of the aminoacylation reaction by aminoacyl-tRNA synthetases like tryptophanyl and pyrrolysyl tRNA synthetase, structural details related to an enzyme catalyzed reaction that influences the process of quorum sensing in bacteria. Further, we have also examined the ‘dynamic allosterism’ that manipulates the activity of MutS, a prominent component of the DNA bp ‘mismatch repair’ machinery. Additionally, our protein structure network (PSN) based studies on a dataset of Rossmann fold containing proteins have provided insights into the structural signatures that drive the adoption of a fold from a repertoire of diverse sequences. Ligand induced percolations distant from the active sites, which may be of functional relevance have also been probed, in the context of the S1A family of serine proteases. In the course of our investigation, we have borrowed several concepts of network parameters from social network analysis and have developed new concepts.
The Introduction (Chapter-1) summarizes the relevant literature and lays down a suitable background for the subsequent chapters in the thesis. The major questions addressed and the main goal of this thesis are described to set an appropriate stage for the detailed discussions. The methodologies involved are discussed in Chapter-2. Chapter-3 deals with a protein, LuxS that is involved in the bacterial quorum sensing; the first part of the chapter describes the application of network analysis on the static structures of several LuxS proteins from different organisms and the second part of this chapter describes the application of a dynamic network approach to analyze the MD trajectories of H.pylori LuxS. Chapter-4 focuses on the investigation of human tryptophanyl-tRNA synthetase (hTrpRS), with an emphasis to identify ligand induced subtle conformational changes in terms of the alternation of rigidity/flexibility at different sites and the re-organisation of the free energy landscape. Chapter-5 presents a novel application of a quantum clustering (QC) technique, popular in the fields of pattern recognition, to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. The protein structure network (PSN) in the earlier studies were constituted on the basis of geometric interactions. In Chapters 6 and 7, we describe the networks (proteins+nucleic acids) using interaction energy as edges, thus incorporating the detailed chemistry in terms of an energy-weighted complex network. Chapter-6 describes an application of the energy weighted network formalism to probe allosteric communication in D.hafniense pyrrolysyl-tRNA synthetase. The methodology developed for in-depth study of ligand induced changes in DhPylRS has been adopted to the protein MutS, the first ‘check-point protein’ for DNA base pair (bp) mismatch repair. In Chapter-7, we describe the network analysis and the biological insights derived from this study (the work is done in collaboration with Prof. David Beveridge and Dr. Susan Pieniazek). Chapter-8 describes the application of a network approach to capture the ligand-induced subtle global changes in protein structures, using a dataset of high resolution structures from the S1A family of serine proteases. Chapter-9 deals with probing the structural rationale behind diverse sequences adopting the same fold with the NAD(P)-binding Rossmann fold as a case study. Future directions are discussed in the final chapter of the thesis (Chapter-10).
|
33 |
A Computational Study of the Mechanism for F1-ATPase Inhibition by the Epsilon SubunitThomson, Karen J. January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The multi-protein complex of F0F1 ATP synthase has been of great interest in the fields of microbiology and biochemistry, due to the ubiquitous use of ATP as a biological energy source. Efforts to better understand this complex have been made
through structural determination of segments based on NMR and crystallographic data. Some experiments have provided useful data, while others have brought up more questions, especially when structures and functions are compared between bacteria
and species with chloroplasts or mitochondria.
The epsilon subunit is thought to play a signi cant role in the regulation of ATP synthesis and hydrolysis, yet the exact pathway is unknown due to the experimental difficulty in obtaining data along the transition pathway. Given starting and end point protein crystal structures, the transition pathway of the epsilon subunit was examined through computer simulation.The purpose of this investigation is to determine the likelihood of one such proposed mechanism for the involvement of the epsilon subunit in ATP regulation in bacterial species such as E. coli.
|
34 |
mTOR regulates Aurora A via enhancing protein stabilityFan, Li 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis. Dysregulation of mTOR signaling occurs in many human cancers and its inhibition causes arrest at the G1 cell cycle stage. However, mTOR’s impact on mitosis (M-phase) is less clear. Here, suppressing mTOR activity impacted the G2-M transition and reduced levels of M-phase kinase, Aurora A. mTOR inhibitors did not affect Aurora A mRNA levels. However, translational reporter constructs showed that mRNA containing a short, simple 5’-untranslated region (UTR), rather than a complex structure, is more responsive to mTOR inhibition. mTOR inhibitors decreased Aurora A protein amount whereas blocking proteasomal degradation rescues this phenomenon, revealing that mTOR affects Aurora A protein stability. Inhibition of protein phosphatase, PP2A, a known mTOR substrate and Aurora A partner, restored mTOR-mediated Aurora A abundance. Finally, a non-phosphorylatable Aurora A mutant was more sensitive to destruction in the presence of mTOR inhibitor. These data strongly support the notion that mTOR controls Aurora A destruction by inactivating PP2A and elevating the phosphorylation level of Ser51 in the “activation-box” of Aurora A, which dictates its sensitivity to proteasomal degradation. In summary, this study
is the first to demonstrate that mTOR signaling regulates Aurora-A protein expression and stability and provides a better understanding of how mTOR regulates mitotic kinase expression and coordinates cell cycle progression. The involvement of mTOR signaling in the regulation of cell migration by its upstream activator, Rheb, was also examined. Knockdown of Rheb was found to promote F-actin reorganization and was associated with Rac1 activation and increased migration of glioma cells. Suppression of Rheb promoted platelet-derived growth factor receptor (PDGFR) expression. Pharmacological inhibition of PDGFR blocked these events. Therefore, Rheb appears to suppress tumor cell migration by inhibiting expression of growth factor receptors that in turn drive Rac1-mediate actin polymerization.
|
35 |
Mechanisms of translational regulation in the pancreatic β cell stress responseTemplin, Andrew Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The islet beta cell is unique in its ability to synthesize and secrete insulin for use in the body. A number of factors including proinflammatory cytokines, free fatty acids, and islet amyloid are known to cause beta cell stress. These factors lead to lipotoxic, inflammatory, and ER stress in the beta cell, contributing to beta cell dysfunction and death, and diabetes. While transcriptional responses to beta cell stress are well appreciated, relatively little is known regarding translational responses in the stressed beta cell. To study translation, I established conditions in vitro with MIN6 cells and mouse islets that mimicked UPR conditions seen in diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Chronic exposure of beta cells to proinflammatory cytokines (IL-1 beta, TNF-alpha, IFN-gamma), or to the saturated free fatty acid palmitate, led to changes in global beta cell translation consistent with attenuation of translation initiation, which is a hallmark of ER stress. In addition to changes in global translation, I observed transcript specific regulation of ribosomal occupancy in beta cells. Similar to other privileged mRNAs (Atf4, Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes during the UPR, whereas the mRNA encoding a proinsulin processing enzyme (Cpe) partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5’ untranslated region of mouse Pdx1 (between bp –105 to –280) contained elements that promoted translation under both normal and UPR conditions. In contrast to regulation of translation initiation, deoxyhypusine synthase (DHS) and eukaryotic translation initiation factor 5A (eIF5A) are required for efficient translation elongation of specific stress relevant messages in the beta cell including Nos2. Further, p38 signaling appears to promote translational elongation via DHS in the islet beta cell. Together, these data represent new insights into stress induced translational regulation in the beta cell. Mechanisms of differential mRNA translation in response to beta cell stress may play a key role in maintenance of islet beta cell function in the setting of diabetes.
|
36 |
Mechanisms of binding diversity in protein disorder : molecular recognition features mediating protein interaction networksHsu, Wei-Lun 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intrinsically disordered proteins are proteins characterized by lack of stable tertiary structures under physiological conditions. Evidence shows that disordered proteins are not only highly involved in protein interactions, but also have the capability to associate with more than one partner. Short disordered protein fragments, called “molecular recognition features” (MoRFs), were hypothesized to facilitate the binding diversity of highly-connected proteins termed “hubs”. MoRFs often couple folding with binding while forming interaction complexes. Two protein disorder mechanisms were proposed to facilitate multiple partner binding and enable hub proteins to bind to multiple partners: 1. One region of disorder could bind to many different partners (one-to-many binding), so the hub protein itself uses disorder for multiple partner binding; and 2. Many different regions of disorder could bind to a single partner (many-to-one binding), so the hub protein is structured but binds to many disordered partners via interaction with disorder. Thousands of MoRF-partner protein complexes were collected from Protein Data Bank in this study, including 321 one-to-many binding examples and 514 many-to-one binding examples. The conformational flexibility of MoRFs was observed at atomic resolution to help the MoRFs to adapt themselves to various binding surfaces of partners or to enable different MoRFs with non-identical sequences to associate with one specific binding pocket. Strikingly, in one-to-many binding, post-translational modification, alternative splicing and partner topology were revealed to play key roles for partner selection of these fuzzy complexes. On the other hand, three distinct binding profiles were identified in the collected many-to-one dataset: similar, intersecting and independent. For the similar binding profile, the distinct MoRFs interact with almost identical binding sites on the same partner. The MoRFs can also interact with a partially the same but partially different binding site, giving the intersecting binding profile. Finally, the MoRFs can interact with completely different binding sites, thus giving the independent binding profile. In conclusion, we suggest that protein disorder with post-translational modifications and alternative splicing are all working together to rewire the protein interaction networks.
|
Page generated in 0.0801 seconds