Spelling suggestions: "subject:"proteinstruktur"" "subject:"proteilstruktur""
11 |
Structure, Function and Dynamics of G-Protein coupled ReceptorsEichler, Stefanie 26 January 2012 (has links)
Understanding the function of membrane proteins is crucial to elucidate the molecular mechanisms by which transmembrane signaling based physiological processes,i. e., the interactions of extracellular ligands with membrane-bound receptors, are regulated.
In this work, synthetic transmembrane segments derived from the visual photoreceptor rhodopsin, the full length system rhodopsin and mutants of opsin are used to study physical processes that underlie the function of this prototypical class-A G-protein coupled Receptor.
The dependency of membrane protein hydration and protein-lipid interactions on side chain charge neutralization is addressed by fluorescence spectroscopy on synthetic transmembrane segments in detergent and lipidic environment constituting transmembrane segments of rhodopsin in the membrane. Results from spectroscopic studies allow us to construct a structural and thermodynamical model of coupled protonation of the conserved ERY motif in transmembrane helix 3 of rhodopsin and of helix restructuring in the micro-domain formed at the protein/lipid water phase boundary.
Furthermore, synthesized peptides and full length systems were studied by time resolved FTIR-Fluorescence Cross Correlation Hydration Modulation, a technique specifically developed for the purpose of this study, to achieve a full prospect of time-resolved hydration effects on lipidic and proteinogenic groups, as well as their interactions. Multi-spectral experiments and time-dependent analyses based on 2D correlation where established to analyze large data sets obtained from time-resolved FTIR difference spectra and simultaneous static fluorescence recordings. The data reveal that lipids play a mediating role in transmitting hydration to the subsequent membrane protein response followed by water penetration into the receptor structure or into the sub-headgroup region in single membrane-spanning peptides carrying the conserved proton uptake site (monitored by the fluorescence emission of hydrophobic buried tryptophan).
Our results support the assumption of the critical role of the lipid/water interface in membrane protein function and they prove in particular the important influence of electrostatics, i. e., side chain charges at the phase boundary, and hydration on that function. / Für die Aufklärung der molekularen Wirkungsweise von physiologischen, auf Signaltransduktion, d. h. dem Zusammenspiel von extrazellulären Reizen und membrangebundenen Rezeptoren, beruhenden Prozessen ist das Verständnis der Funktion von Membranproteinen unerlässlich.
In dieser Arbeit werden von Rhodopsin abgleitete, synthetische transmembrane Segmentpeptide, Opsin-Mutanten und der vollständige Photorezeptor Rhodopsin untersucht, um die physikalischen Prozesse zu beleuchten, die der Funktionen dieses prototypischen Klasse-A G-Protein gekoppelten Rezeptors zugrunde liegen.
Die Abhängigkeit der Membranprotein-Hydratation und der Lipid-Protein-Wechselwirkung von der Ladung einer Aminosäuren-Seitenkette wird erforscht. Hierzu werden synthetische, transmembrane Segmentpeptide in Lipid und Detergenz, als Modell transmembraner Segmente von Rhodopsin in der Membran mittels Fluoreszenzspektroskopie untersucht. Aus den erhaltenen Ergebnissen wird ein thermodynamisches und strukturelles Modell hergeleitet, welches die Kopplung der Protonierung des hochkonservierten ERY-Motivs in Transmembranhelix 3 von Rhodopsin an die Restrukturierung der Helix in der Mikroumgebung der Lipid-Wasser-Phasengrenze erklärt. Des Weiteren werden sowohl die Segementpeptide als auch die vollständigen Systeme Opsin und Rhodopsin mittels zeitaufgelöster FTIR-Fluoreszenz-Kreuzkorrelations-Hydratations-Modulation untersucht. Diese Technik wurde eigens zur Aufklärung von zeitabhängigen Hydratationseffekten auf Lipide und Proteine oder Peptide entwickelt. Dabei werden zeitaufgelöste FTIR Differenz-Spektren und gleichzeitig statische Fluoreszenzsignale aufgenommen und diese zeitabhängigen multispektralen Datensätze mittels 2D Korrelation analysiert. Die Auswertung der Experimente enthüllt einen sequentiellen Hydratationsprozess. Dieser beginnt mit der Bildung von Wasserstoffbrückenbindungen an der Carbonylgruppe des Lipids, gefolgt von Strukturänderungen der Transmembranproteine und abgeschlossen durch das Eindringen von Wasser in das Proteininnere. Letzteres wird nachgewiesen durch die Fluoreszenz von Tryptophan im hydrophoben Peptid- oder Proteininneren.
Die Ergebnisse dieser Arbeit unterstreichen die Annahme, dass Lipid-Protein-Wechselwirkungen eine entscheidende Rolle in der Funktion von Membranproteinen spielen und das insbesondere Elektrostatik, in Form von Ladungen an der Phasengrenze, und die Hydratisierung einen kritischen Einfluss auf diese Funktion haben.
|
12 |
Structure based drug repositioning by exploiting structural properties of drug's binding modeAdasme, Melissa F. 20 July 2021 (has links)
The rapid pace of scientific advances is enabling a greater understanding of diseases at the molecular level. In turn, the process for researching and developing new medicines is growing in difficulty, costs, and length as a result of the scientific, technical, and regulatory challenges related to the development process.
In light of these challenges, drug repositioning, the utilization of known drugs for a new medical indication, has emerged as an increasingly important strategy for the new drug discovery. Availability of prior knowledge regarding
safety, efficacy and the appropriate administration route significantly reduces the development costs and cuts down the development time resulting in less effort to successfully bring a repositioned drug to market.
In another aspect, a protein’s shape is closely linked with its function; thereby, the ability to predict this structure unlocks a greater understanding of what it does and how it works. Nowadays, more than 10,000 biologically relevant protein structures are yearly released and available to the scientific community. A number suspected to triple over the following years due to the recent breakthroughs in structure prediction techniques.
This work introduces a novel structure-based drug repositioning approach, exploiting the similarities of drugs’ binding mode via identification and virtual screening of interaction patterns. Such patterns are uncovered with the use of PLIP, an automated tool for the in silico detection of non-covalent interactions defining the binding mode between drugs and their protein targets. Besides, the approach has been applied to a series of case studies with tangible results: the uncovering of an antimalarial drug as potential chemoresistance treatment, the explained binding mode of ibrutinib to the target VEGR2 as potential B-cells deactivator in autoimmune diseases, and three over the counter drugs with a proved anti-trypanocidal activity as treatments for Chagas disease.
Overall the structure-based approach with interaction patterns proved to be a suitable framework for identifying novel repositioning candidates. The uncovered candidates were structurally unrelated to the currently available treatments, and experimental assays successfully demonstrated their inhibitory activity on the protein targets of interest. Furthermore, the approach represents a promising option for the 'in high demand' diseases and all rare and neglected diseases for which no reliable treatment has yet been found and for which the pharmaceutical industry makes only a little investment.
|
13 |
Crystalline, membrane-embedded, and fibrillar proteins investigated by solid-state NMR spectroscopy / Untersuchung kristalliner, membranständiger und fibrillärer Proteine mittels Festkörper-NMR-SpektroskopieSchneider, Robert 30 January 2009 (has links)
No description available.
|
14 |
Structural characterization of membrane proteins by solid-state NMR spectroscopy / Strukturelle Charakterisierung von Membranproteinen mittels Festkörper-NMR-SpektroskopieSeidel, Karsten 19 February 2008 (has links)
No description available.
|
15 |
Solid-state NMR of (membrane) protein complexes: Novel methods and applications / Festkörper-NMR von (Membran-) Proteinkomplexen: Neue Methoden und AnwendungenAndronesi, Ovidiu-Cristian 18 April 2006 (has links)
No description available.
|
Page generated in 0.0638 seconds