• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient laser-driven proton acceleration in the ultra-short pulse regime

Zeil, Karl 10 July 2013 (has links) (PDF)
The work described in this thesis is concerned with the experimental investigation of the acceleration of high energy proton pulses generated by relativistic laser-plasma interaction and their application. Using the high intensity 150 TW Ti:sapphire based ultra-short pulse laser Draco, a laser-driven proton source was set up and characterized. Conducting experiments on the basis of the established target normal sheath acceleration (TNSA) process, proton energies of up to 20 MeV were obtained. The reliable performance of the proton source was demonstrated in the first direct and dose controlled comparison of the radiobiological effectiveness of intense proton pulses with that of conventionally generated continuous proton beams for the irradiation of in vitro tumour cells. As potential application radiation therapy calls for proton energies exceeding 200 MeV. Therefore the scaling of the maximum proton energy with laser power was investigated and observed to be near-linear for the case of ultra-short laser pulses. This result is attributed to the efficient predominantly quasi-static acceleration in the short acceleration period close to the target rear surface. This assumption is furthermore confirmed by the observation of prominent non-target-normal emission of energetic protons reflecting an asymmetry in the field distribution of promptly accelerated electrons generated by using oblique laser incidence or angularly chirped laser pulses. Supported by numerical simulations, this novel diagnostic reveals the relevance of the initial prethermal phase of the acceleration process preceding the thermal plasma sheath expansion of TNSA. During the plasma expansion phase, the efficiency of the proton acceleration can be improved using so called reduced mass targets (RMT). By confining the lateral target size which avoids the dilution of the expanding sheath and thus increases the strength of the accelerating sheath fields a significant increase of the proton energy and the proton yield was observed.
2

Experimental studies of laser driven proton acceleration from ultrashort and highly intense laser pulse interaction with overdense plasma

Kuk, Donghoon 16 February 2015 (has links)
The generation of high current multi-MeV protons and ions by irradiation of short pulse high intense laser on an ultra-thin target has been observed and subjected great interest in recent. When ultra-thin overdense target is irradiated by focused ultraintense laser pulse, hot electrons are generated by various mechanisms and they generate energetic ion beams. In TNSA, a quasi-electrostatic field is produced on the target rear surface when the the laser pulse interacts with overdense target, driving hot electrons go torward the target rear surface. However, this mechanism results in a range of field gradients leading to a broad proton energy distribution typically. To overcome the issue, an alternative accelration mechanism has been presented to achieve the quasi-monoenergetic proton acceleration and the mechanism is called Radiation Pressure Acceleration. In the RPA, the radiation pressure push electrons into the target smoothly and setting up an electrostatic field by the laser pressure. In this thesis, we study two alternative experimental methods for the quasi-monoenergetic proton acceleration and find experimental feasibility of the presented methods from other research groups. / text
3

Efficient laser-driven proton acceleration in the ultra-short pulse regime

Zeil, Karl 20 June 2013 (has links)
The work described in this thesis is concerned with the experimental investigation of the acceleration of high energy proton pulses generated by relativistic laser-plasma interaction and their application. Using the high intensity 150 TW Ti:sapphire based ultra-short pulse laser Draco, a laser-driven proton source was set up and characterized. Conducting experiments on the basis of the established target normal sheath acceleration (TNSA) process, proton energies of up to 20 MeV were obtained. The reliable performance of the proton source was demonstrated in the first direct and dose controlled comparison of the radiobiological effectiveness of intense proton pulses with that of conventionally generated continuous proton beams for the irradiation of in vitro tumour cells. As potential application radiation therapy calls for proton energies exceeding 200 MeV. Therefore the scaling of the maximum proton energy with laser power was investigated and observed to be near-linear for the case of ultra-short laser pulses. This result is attributed to the efficient predominantly quasi-static acceleration in the short acceleration period close to the target rear surface. This assumption is furthermore confirmed by the observation of prominent non-target-normal emission of energetic protons reflecting an asymmetry in the field distribution of promptly accelerated electrons generated by using oblique laser incidence or angularly chirped laser pulses. Supported by numerical simulations, this novel diagnostic reveals the relevance of the initial prethermal phase of the acceleration process preceding the thermal plasma sheath expansion of TNSA. During the plasma expansion phase, the efficiency of the proton acceleration can be improved using so called reduced mass targets (RMT). By confining the lateral target size which avoids the dilution of the expanding sheath and thus increases the strength of the accelerating sheath fields a significant increase of the proton energy and the proton yield was observed.
4

Transport and control of a laser-accelerated proton beam for application to radiobiology / Transport et contrôle de faisceaux de protons accélérés par laser pour une application à la radiobiologie

Pommarel, Loann 13 January 2017 (has links)
L’accélération de particules par interaction laser-plasma est une alternative prometteuse aux accélérateurs conventionnels qui permettrait de rendre plus compactes les machines du futur dédiées à la protonthérapie. Des champs électriques extrêmes de l’ordre du TV/m sont créés en focalisant une impulsion laser ultra-intense sur une cible solide mince de quelques micromètres d’épaisseur, ce qui produit un faisceau de particules de haute énergie. Ce dernier contient des protons ayant une énergie allant jusqu’à la dizaine de mégaélectron-volts, et est caractérisé par une forte divergence angulaire et un spectre en énergie très étendu.Le but de cette thèse est de caractériser parfaitement un accélérateur laser-plasma afin de produire un faisceau de protons stable, satisfaisant les critères d'énergie, de charge et d'homogénéité de surface requis pour son utilisation en radiobiologie. La conception, la réalisation et l’implémentation d’un système magnétique, constitué d'aimants permanents quadripolaires ont été optimisés au préalable avec des simulations numériques. Ce système permet d’obtenir un faisceau de protons ayant un spectre en énergie qui à été mise en forme, et dont le profil est uniforme sur une surface de taille adaptée aux échantillons biologiques.Une dosimétrie absolue et en ligne a également été établie, permettant le contrôle de la dose délivrée en sortie. Pour cela, une chambre d'ionisation à transmission, précédemment calibrée sur un accélérateur à usage médical de type cyclotron, a été mise en place sur le trajet du faisceau de protons. Des simulations Monte Carlo ont ensuite permis de calculer la dose déposée dans les échantillons. Ce système compact autorise maintenant de définir un protocole expérimental rigoureux pour la poursuite d’expériences in vitro de radiobiologie. De premières irradiations de cellules cancéreuses ont été ainsi réalisées in vitro, ouvrant la voie à l’exploration des effets de rayonnements ionisants pulsés à haut débit de dose sur les cellules vivantes. / Particle acceleration by laser-plasma interaction is a promising alternative to conventional accelerators that could make future devices dedicated to protontherapy more compact. Extreme electric fields in the order of TV/m are created when an ultra-intense laser pulse is focused on a thin solid target with a thickness of a few micrometers, which generates a beam of highly energetic particles. The latter includes protons with energies up to about ten megaelectron-volts and characterised by a wide angular divergence and a broad energy spectrum.The goal of this thesis is to fully characterise a laser-based accelerator in order to produce a stable proton beam meeting the energy, charge and surface homogeneity requirements for radiobiological experiments. The design, realisation and implementation of a magnetic system made of permanent magnet quadrupoles were optimised beforehand through numerical simulations. It enables to obtain a beam with a shaped energy spectrum and with a uniform profile over a surface with a size adapted to the biological samples.Deferred and online dosimetry was setup to monitor the delivered output dose. For that purpose, a transmission ionisation chamber, previously calibrated absolutely on a medical proton accelerator, was used. Monte Carlo simulations enabled to compute the dose deposited into the samples. This compact system allows now to define a rigorous experimental protocol for in vitro radiobiological experiments. First experiments of cancer cell irradiation have been carried out, paving the way for the exploration of the effects of pulsed ionizing radiations at extremely high dose rates on living cells.
5

Entwicklung zweier Spektrometer für laserbeschleunigte Protonenstrahlen

Richter, Tom 10 October 2013 (has links) (PDF)
Durch die Fokussierung eines ultrakurzen und hochintensiven Laserpulses auf ein Festkörpertarget können Pulse von Protonen und anderen positiv geladenen Ionen mit Teilchenenergien von einigen MeV pro Nukleon erzeugt werden. Die Charakterisierung dieser Teilchenstrahlung erfordert die Identifizierung der Ionenspezies und die Bestimmung ihrer spektralen Verteilung möglichst nach jedem Puls. Im Rahmen dieser Diplomarbeit wurden zwei Spektrometer entwickelt und am DRACO-Lasersystem des Forschungszentrums Dresden implementiert. Neben der Inbetriebnahme eines Thomson-Spektrometers mit einer Mikrokanalplatte und einem Fluoreszenzschirm als Auslese erfolgte die Entwicklung eines Flugzeitspektrometers. Die Verwendung einer Mikrokanalplatte mit nur 180ps Anstiegszeit als Signalverstärker sorgt darin für eine verbesserte Energieauflösung und einen flexibleren Einsatz im Experimentierbetrieb. Ein dem Flugzeitsignal überlagertes Störsignal, welches durch die Einstreuungen eines elektromagnetischen Impulses in den Aufbau verursacht wurde, konnte erfolgreich durch die Anwendung verschiedener Filter unterdrückt werden. Als Ergebnis dieser Arbeit steht eine anwendungsbereite Diagnostik für laserbeschleunigte Protonen und Ionen zur Verfügung. / By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positive charged ions with energies of several MeV per nucleon are generated. It is necessary to identify the species of those particles and obtain their energy spectra in a single-shot regime. Within this diploma thesis two spectrometers have been developed and implemented in the DRACO-laboratory of the Forschungszentrum Dresden. Besides a Thomson spectrometer with read-out via microchannel plate and phosphor screen, a time-of-flight spectrometer was developed. The usage of a microchannel plate with 180ps rise time as a signal amplifier leads therein to a better energy resolution and a more flexible handling in experimental operation. A noise signal generated by stray pick-up of an electromagnetic pulse and superimposing the time-of-flight signal was considerably reduced by the application of different filters. As a result of this work a ready-to-use diagnostic for laser accelerated protons and ions is available.
6

Entwicklung zweier Spektrometer für laserbeschleunigte Protonenstrahlen

Richter, Tom 08 April 2009 (has links)
Durch die Fokussierung eines ultrakurzen und hochintensiven Laserpulses auf ein Festkörpertarget können Pulse von Protonen und anderen positiv geladenen Ionen mit Teilchenenergien von einigen MeV pro Nukleon erzeugt werden. Die Charakterisierung dieser Teilchenstrahlung erfordert die Identifizierung der Ionenspezies und die Bestimmung ihrer spektralen Verteilung möglichst nach jedem Puls. Im Rahmen dieser Diplomarbeit wurden zwei Spektrometer entwickelt und am DRACO-Lasersystem des Forschungszentrums Dresden implementiert. Neben der Inbetriebnahme eines Thomson-Spektrometers mit einer Mikrokanalplatte und einem Fluoreszenzschirm als Auslese erfolgte die Entwicklung eines Flugzeitspektrometers. Die Verwendung einer Mikrokanalplatte mit nur 180ps Anstiegszeit als Signalverstärker sorgt darin für eine verbesserte Energieauflösung und einen flexibleren Einsatz im Experimentierbetrieb. Ein dem Flugzeitsignal überlagertes Störsignal, welches durch die Einstreuungen eines elektromagnetischen Impulses in den Aufbau verursacht wurde, konnte erfolgreich durch die Anwendung verschiedener Filter unterdrückt werden. Als Ergebnis dieser Arbeit steht eine anwendungsbereite Diagnostik für laserbeschleunigte Protonen und Ionen zur Verfügung. / By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positive charged ions with energies of several MeV per nucleon are generated. It is necessary to identify the species of those particles and obtain their energy spectra in a single-shot regime. Within this diploma thesis two spectrometers have been developed and implemented in the DRACO-laboratory of the Forschungszentrum Dresden. Besides a Thomson spectrometer with read-out via microchannel plate and phosphor screen, a time-of-flight spectrometer was developed. The usage of a microchannel plate with 180ps rise time as a signal amplifier leads therein to a better energy resolution and a more flexible handling in experimental operation. A noise signal generated by stray pick-up of an electromagnetic pulse and superimposing the time-of-flight signal was considerably reduced by the application of different filters. As a result of this work a ready-to-use diagnostic for laser accelerated protons and ions is available.

Page generated in 0.139 seconds