Spelling suggestions: "subject:"protoplanetary risks"" "subject:"protoplanetary disks""
31 |
The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?Pohl, A., Benisty, M., Pinilla, P., Ginski, C., Boer, J. de, Avenhaus, H., Henning, Th., Zurlo, A., Boccaletti, A., Augereau, J.-C., Birnstiel, T., Dominik, C., Facchini, S., Fedele, D., Janson, M., Keppler, M., Kral, Q., Langlois, M., Ligi, R., Maire, A.-L., Ménard, F., Meyer, M., Pinte, C., Quanz, S. P., Sauvage, J.-F., Sezestre, É., Stolker, T., Szulágyi, J., Boekel, R. van, Plas, G. van der, Villenave, M., Baruffolo, A., Baudoz, P., Mignant, D. Le, Maurel, D., Ramos, J., Weber, L. 16 November 2017 (has links)
HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (similar to 1.2 mu m) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0 ''.16 (similar to 19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0 ''.18 (similar to 21 au) and 0 ''.56 (similar to 66 au) and marginally detect a faint third gap at 0 ''.70-0 ''.73 (similar to 82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate.
|
32 |
Étude du grossissement et de la distribution spatiale des grains de poussière dans les disques protoplanétairesBoehler, Yann 13 December 2011 (has links)
Les étoiles, durant les premiers millions d’années de leur existence, sont entourées d’un disque composé à 99% de gaz et à 1 % de poussière. La poussière est initialement sous forme de grains de taille sub-micrométrique mais évolue jusqu’à pouvoir former les planètes. Grâce à l’interféromètre du plateau de Bure, avec lequel nous avons observé aux longueurs d’onde millimétrique, l’évolution temporelle ainsi que la distribution radiale des grains de poussière a pu être mise en évidence sur de nombreux disques. Par ailleurs, l’important gain en résolution et sensibilité d’ALMA, un nouvel interféromètre très performant basé au Chili, a nécessité l’amélioration de notre code de transfert radiatif afin de déterminer si et comment il allait être possible d’observer la sédimentation de la poussière, étape préalable à la formation des planétésimaux. / The stars, during the first millions years of their existence, are surrounded by a protoplanetary disk composed of99 % of gas and of 1 % of dust. The dust is initially under the form of sub-micrometric grains but evolves to likelyform planets. Thanks to the Plateau de Bure interferometer, with whom we observed at the millimeter wavelengths, the temporal evolution as well the radial distribution of the dust grains has been bringing to light in several disks.In addition, the important gain in resolution and in sensibility of ALMA, a new interferometer based in Chili, has required the improvement of our transfert radiativ code in order to determine if and how it will be possible to observe the dust settling, preliminary step for the formation of planetesimals.
|
33 |
Dynamics of gas and dust in protoplanetary disks: planet formation from observational and numerical perspectivesBi, Jiaqing 21 December 2020 (has links)
Dust and gas in protoplanetary disks are the building blocks of planets. In this thesis, we study the dynamics of the gas and dust, which are crucial for the planet formation theory, using observational and numerical approaches. The observational part contains the case study of a rare circumtriple disk around the GW Ori hierarchical triple system. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.3 mm dust continuum and 12CO J = 2-1 molecular gas emission of the disk. For the first time, we identify three dust rings in the GW Ori disk at ~46, 188, and 338 au, with the outermost ring being the largest dust ring ever found in protoplanetary disks. We use visibility modeling of the dust continuum and kinematics modeling of CO lines to show that the disk has misaligned parts, and the innermost dust ring is eccentric. We interpret these substructures as evidence of ongoing dynamical interactions between the triple stars and the circumtriple disk. In the numerical part, we study whether or not dust around gas gaps opened by planets can remain settled by performing three-dimensional, dust-plus-gas simulations of protoplanetary disks with an embedded planet. We find planets that open gas gaps 'puff up' small, sub-mm-sized grains at the gap edges, where the dust scale-height can reach 80% of the gas scale-height. We attribute this dust 'puff-up' to the planet-induced meridional gas flows previously identified by Fung and Chiang. We thus emphasize the importance of explicit 3D simulations to obtain the vertical distribution of sub-mm-sized grains around planet gaps. We caution that the gas-gap-opening planet interpretation of well-defined dust rings is only self-consistent with large grains exceeding mm in size. / Graduate
|
34 |
Accretion variability in young, low-mass stellar systemsRobinson, Connor Edward 11 February 2021 (has links)
Through the study of accretion onto the young, low-mass stars known as T Tauri Stars (TTS), we can better understand the formation of our solar system. Gas is funneled along stellar magnetic field lines into magnetospheric accretion columns where it reaches free-fall velocities and shocks at the stellar surface, generating emission that carries information about the inner regions of the protoplanetary disk. Accretion is a variable process, with characteristic timescales ranging from minutes to years. In this dissertation, I use simulations, models, and observations to provide insight into the driving forces of mass accretion rate variability on timescales of minutes to weeks and the structure of the inner disk. Using hydrodynamic simulations, I find that steady-state, transonic accretion occurs naturally in the absence of any other source of variability. If the density in the inner disk varies smoothly in time with roughly day-long time-scales (e.g., due to turbulence), traveling shocks develop within the accretion column, which lead to rapid increases in the accretion luminosity followed by slower declines. I present the largest Hubble Space Telescope (HST) spectral variability study of TTS to date. I infer mass accretion rates and accretion column surface coverage using newly updated accretion shock models. I find typical changes in the mass accretion rate of order 10% and moderate changes in the surface coverage for most objects in the sample on week timescales. Individual peculiar epochs are further discussed. I find that the inner disk is inhomogeneous and that dust may survive near the magnetic truncation radius. Next, I link 2-minute cadence light curves from the Transiting Exoplanet Survey Satellite (TESS) to accretion using ground-based U-band photometry. Additional HST observations for one target enable more detailed connections between TESS light curves and accretion. I also use the TESS light curves to identify rotation periods and patterns of quasi-periodicity. Finally, I connect hydrodynamic simulations, accretion shock models, and stellar rotation to predict signatures of a turbulent inner disk. I generate light curves from these models to make comparisons to previous month-long photometric monitoring surveys of TTS using metrics of light curve symmetry and periodicity.
|
35 |
Chemical structures of protoplanetary disks and possibility to locate the position of the H2O snowline using spectroscopic observations / 原始惑星系円盤の化学構造と分光観測によるH2Oスノーラインの同定可能性Notsu, Shota 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21574号 / 理博第4481号 / 新制||理||1643(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 嶺重 慎, 教授 太田 耕司, 准教授 栗田 光樹夫 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
36 |
Linking Super Earth Composition to Planet Formation HistoryAlessi, Matthew January 2016 (has links)
Super Earths are a class of exoplanets with masses between 1-10 M⊕. Comprising nearly 70 % of the discovered planet population, they are largest class of exoplanets known. Super Earths exhibit an interesting variety of compositions, as their densities imply that they range from dense, rocky planets to those with substantial amounts of water. This thesis aims to understand why super Earths form so frequently, and to connect the final compositions of super Earths to the regions where they form in protoplanetary disks. To do this, we combine a model that calculates the physical and chemical conditions within a protoplanetary disk with a core accretion model of planet formation. A key feature of our planet formation model is planet traps that act as barriers to rapid type-I migration. The traps we include in our model are the dead zone, which can be caused by cosmic ray or X-ray ionization, the ice line, and the heat transition. In disks with lifetimes > 4 Myr we find that planet formation in all traps results in Jovian planets. Typically, the X-ray dead zone and heat transition traps produce hot Jupiters orbiting near 0.05 AU while the cosmic ray dead zone and ice line traps produce Jupiters near 1 AU. Super Earths are found to form in disks with short lifetimes < 2 Myr that photoevaporate prior to planets undergoing runaway gas accretion. Additionally, we find that super Earth formation takes place in low-mass disks (< 0.05 M⊙), where planet formation timescales exceed disk lifetimes inferred through observations. The location of various traps throughout the disk play a key role in allowing super Earths to achieve a range of compositions. Super Earths forming in the ice line or heat transition accrete solids from cold regions of the disk, resulting in planets with large ice contents (up to 50 % by mass). Conversely, super Earths formed in the dead zone trap accrete solids from warm regions of the disk and are therefore composed of mostly rocky materials (less than 5 % ice by mass). / Thesis / Master of Science (MSc)
|
37 |
Monte Carlo radiation transfer studies of protoplanetary environmentsWalker, Christina H. January 2007 (has links)
Monte Carlo radiation transfer provides an efficient modelling tool for probing the dusty local environment of young stars. Within this thesis, such theoretical models are used to study the disk structure of objects across the mass spectrum - young low mass Brown Dwarfs, solar mass T-Tauri stars, intermediate mass Herbig Ae stars, and candidate B-stars with massive disks. A Monte Carlo radiation transfer code is used to model images and photometric data in the UV - mm wavelength range. These models demonstrate how modelling techniques have been updated in an attempt to reduce the number of unknown parameters and extend the diversity of objects that can be studied.
|
38 |
Accretion Disks and the Formation of Stellar SystemsKratter, Kaitlin Michelle 18 February 2011 (has links)
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods which we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, very massive stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
|
39 |
THE DEPLETION OF WATER DURING DISPERSAL OF PLANET-FORMING DISK REGIONSBanzatti, A., Pontoppidan, K. M., Salyk, C., Herczeg, G. J., van Dishoeck, E. F., Blake, G. A. 10 January 2017 (has links)
We present a new velocity-resolved survey of 2.9 mu m spectra of hot H2O and OH gas emission from protoplanetary disks, obtained with the Cryogenic Infrared Echelle Spectrometer at the VLT (R similar to 96,000). With the addition of archival Spitzer-IRS spectra, this is the most comprehensive spectral data set of water vapor emission from disks ever assembled. We provide line fluxes at 2.9-33 mu m that probe from the dust sublimation radius at similar to 0.05 au out to the region of the water snow line. With a combined data set for 55 disks, we find a new correlation between H2O line fluxes and the radius of CO gas emission, as measured in velocity-resolved 4.7 mu m spectra (R-co), which probes molecular gaps in inner disks. We find that H2O emission disappears from 2.9 mu m (hotter water) to 33 mu m (colder water) as R-co increases and expands out to the snow line radius. These results suggest that the infrared water spectrum is a tracer of inside-out water depletion within the snow line. It also helps clarify an unsolved discrepancy between water observations and models by finding that disks around stars of M-star > 1.5M(circle dot) generally have inner gaps with depleted molecular gas content. We measure radial trends in H2O, OH, and CO line fluxes that can be used as benchmarks for models to study the chemical composition and evolution of planet-forming disk regions at 0.05-20 au. We propose that JWST spectroscopy of molecular-gas may be used as a probe of inner disk gas depletion, complementary to the larger gaps and holes detected by direct imaging and by ALMA.
|
40 |
Planet Formation Imager (PFI): science vision and key requirementsKraus, Stefan, Monnier, John D., Ireland, Michael J., Duchêne, Gaspard, Espaillat, Catherine, Hönig, Sebastian, Juhasz, Attila, Mordasini, Chris, Olofsson, Johan, Paladini, Claudia, Stassun, Keivan, Turner, Neal, Vasisht, Gautam, Harries, Tim J., Bate, Matthew R., Gonzalez, Jean-François, Matter, Alexis, Zhu, Zhaohuan, Panic, Olja, Regaly, Zsolt, Morbidelli, Alessandro, Meru, Farzana, Wolf, Sebastian, Ilee, John, Berger, Jean-Philippe, Zhao, Ming, Kral, Quentin, Morlok, Andreas, Bonsor, Amy, Ciardi, David, Kane, Stephen R., Kratter, Kaitlin, Laughlin, Greg, Pepper, Joshua, Raymond, Sean, Labadie, Lucas, Nelson, Richard P., Weigelt, Gerd, ten Brummelaar, Theo, Pierens, Arnaud, Oudmaijer, Rene, Kley, Wilhelm, Pope, Benjamin, Jensen, Eric L. N., Bayo, Amelia, Smith, Michael, Boyajian, Tabetha, Quiroga-Nuñez, Luis Henry, Millan-Gabet, Rafael, Chiavassa, Andrea, Gallenne, Alexandre, Reynolds, Mark, de Wit, Willem-Jan, Wittkowski, Markus, Millour, Florentin, Gandhi, Poshak, Ramos Almeida, Cristina, Alonso Herrero, Almudena, Packham, Chris, Kishimoto, Makoto, Tristram, Konrad R. W., Pott, Jörg-Uwe, Surdej, Jean, Buscher, David, Haniff, Chris, Lacour, Sylvestre, Petrov, Romain, Ridgway, Steve, Tuthill, Peter, van Belle, Gerard, Armitage, Phil, Baruteau, Clement, Benisty, Myriam, Bitsch, Bertram, Paardekooper, Sijme-Jan, Pinte, Christophe, Masset, Frederic, Rosotti, Giovanni 04 August 2016 (has links)
The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to similar to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
|
Page generated in 0.0861 seconds