Spelling suggestions: "subject:"pulsar ciming array"" "subject:"pulsar ciming srray""
1 |
Advancing Gravitational Wave Astronomy: Novel Methodologies for Data Analysis and Waveform Modelling of Nanohertz and Millihertz SignalsSperi, Lorenzo 18 July 2024 (has links)
Die Erforschung von Gravitationswellen hat unsere Sicht auf das Universum revolutioniert. Mit dem bevorstehenden Start von LISA, einem Weltraum-Gravitationswellendetektor, und neuen Berichten über Hinweise auf einen Gravitationswellenhintergrund im Nanohertz-Bereich aus Pulsar Timing Array (PTA)-Experimenten, eröffnen sich neue Möglichkeiten und Herausforderungen. Diese Dissertation entwickelt innovative Datenanalysetechniken und Wellenformmodelle, um Erkenntnisse aus diesen Beobachtungen zu gewinnen.
Ein Schwerpunkt liegt auf der Untersuchung von Extreme Mass Ratio Inspirals (EMRIs) durch LISA. Diese Quellen bestehen aus kleinen, kompakten Objekten, die sich um ein zentrales Schwarzes Loch bewegen. Die Wellenformen von EMRIs bieten die Möglichkeit präziser Parametermessungen, sind jedoch aufgrund ihrer langen Signaldauer und harmonischen Komplexität schwer zu berechnen. Wir präsentieren die Implementierung einsatzbereiter EMRI-Wellenformen im Frequenzbereich für Grafikprozessoren (GPUs) und zentrale Recheneinheiten (CPUs). Zudem untersuchen wir das wissenschaftliche Potenzial von EMRIs innerhalb von Akkretionsscheiben, erforschen den Einfluss von Umwelteffekten mittels bayesianischer Methoden und bewerten die Multimessenger-Aussichten dieser Systeme.
Im PTA-Bereich entwickeln wir Methoden zur Optimierung der Datenkombinationen für PTA-Analysen und tragen zum European Pulsar Timing Array bei, indem wir alternative Sampling-Pipelines für die Analyse von Gravitationswellenhintergründen und individuellen Quellen implementieren. Mit transdimensionalen Sampling-Methoden suchen wir nach einzelnen supermassiven Schwarzen Löchern und bewerten deren Signifikanz.
Diese Dissertation trägt zur Weiterentwicklung der Gravitationswellenastronomie bei, indem sie neue Methoden und Modelle entwickelt, die tiefere Einblicke in die kosmischen Phänomene ermöglichen, die von LISA- und PTA-Beobachtungen erfasst werden. / Gravitational wave astronomy has reshaped our understanding of the cosmos. As we look towards the future launch of LISA, a space-based gravitational wave detector, and analyze recent evidence of a nanohertz gravitational wave background from Pulsar Timing Array (PTA) experiments, new opportunities and challenges emerge. This thesis delves into developing novel data analysis techniques and waveform models to extract information from these observations.
Focusing on LISA, we delve into Extreme Mass Ratio Inspirals (EMRIs). These sources consist of small compact objects spiralling into massive black holes at the centres of galaxies. Their observations are expected to provide precise parameter measurements for these systems.
However, EMRI waveform generation poses challenges due to the long signal duration and large harmonic content. For the first time, we provide a fast implementation of EMRI waveforms in the frequency domain, suitable for both graphics processing units (GPUs) and central processing units (CPUs).
In addition, we explore the scientific potential of EMRIs embedded in accretion disks. Employing Bayesian inference, we investigate the measurability of environmental effects and explore these systems' multimessenger prospects.
Transitioning to PTA, we develop methods to optimize data combinations for PTA analyses. We present our contributions to the second data release of the European Pulsar Timing Array collaboration, which consists of implementing alternative sampling pipelines for gravitational wave background and individual source analyses. Using trans-dimensional sampling methods, we search for individual supermassive black hole binaries and assess their significance.
The burgeoning field of gravitational wave astronomy has the potential to transform our understanding of the Universe. The work in this thesis develops new approaches that will facilitate the delivery of the best possible scientific results from current and future gravitational wave observations.
|
2 |
Méthode de détection de sources individuelles d'ondes gravitationnelles par chronométrie d'un réseau de pulsars : application aux données de l'EPTA / A method for searching single gravitational wave sources with a pulsar timing arrayLassus, Antoine 03 December 2013 (has links)
L'existence des ondes gravitationnelles, fluctuations de l'espace-temps lui-même, a été prédite sans, pour l'instant, qu'une détection directe n'ait été encore possible. A l'heure actuelle, des méthodes consistant en des détecteurs interférométriques de plusieurs kilomètres de long sont à l'oeuvre pour permettre une première détection. Nous proposons, dans cette thèse, d'étudier une autre méthode : la chronométrie d'un réseau de pulsars milliseconde. Elle consiste en l'observation régulière et la datation précise des impulsions radio en provenance de pulsars ultrastables. L'onde gravitationnelle produisant retards ou avances des impulsions sur Terre, nous recherchons sa présence sous forme d'un signal corrélé entre les observations faites des différents pulsars du réseau. Dans un premier temps, nous détaillons les processus d'observation et de chronométrie des pulsars, pour nous pencher sur un cas particulier avec le pulsar J1614-2230. Puis, nous présentons les ondes gravitationnelles et leurs sources ainsi que les différentes méthodes de détection. Nous décrivons tout particulièrement la méthode de chronométrie d'un réseau de pulsars appliquée à la recherche d'un signal en provenance d'un système binaire de tous noirs supermassifs. Ensuite, après avoir détaillé les outils statistiques et numériques utilisés, nous appliquons notre méthode à l'injection d'un tel signal dans les observations réelles faites dans le cadre de l'EPTA. Enfin, nous présentons les limites supérieures sur l'amplitude d'un signal en provenance d'un système binaire obtenues sur ces données sans injection grâce à notre méthode en fonction de la fréquence et de la position de la source. / The existence of gravitational waves, ripples in space-time itself, has been predicted but their detection remains elusive. Multiple techniques exist for searching for them, including ground-based kilometer long inteferometers. In this thesis, we present an alternative approach, based on the monitoring and precise timing of radio pulses from an array of millisecond pulsars. A gravitational wave will perturb the propagation of those radio pulses, causing them to reach the Earth with a certain delay. By searching for correlations in the arrival times of the pulsations from different pulsars, we can in principle infer the presence of gravitational waves from observations. We begin by giving an overview of pulsar observations and timing. We illustrate those principles with a practical example : the study of the millisecond pulsar J1614-2230. In the second part we describe gravitational waves, the sources that create them, and the various detection methods. Then, we focus on the pulsar timing array technique, and its potential application to the search for gravitational waves from supermassive black hole binary system. We pursue with a detailed description of the statistical and numerical tools that we used in the present work, and present the results of a search ofr an injected signal in the real EPTA data set. Finally, we employ our new method to derive upper limits on the amplitude of a putative signal in the same EPTA data set, as a function of the frequency and sky location of the supermassive black hole binary system.
|
Page generated in 0.0467 seconds