Spelling suggestions: "subject:"pulse shaping"" "subject:"pulse haping""
41 |
Estudo das propriedades ópticas não-lineares de semicondutores através da formatação de pulsos / Study of nonlinear optical properties of semiconductors via pulse shapingMartins, Renato Juliano 14 March 2017 (has links)
Técnicas de formatação de pulsos permitem o controle das propriedades espectrais e temporais de um feixe laser criando novas possibilidades de estudo da interação luz-matéria. Neste trabalho estudamos as propriedades ópticas não-lineares via formatação de pulsos ultracurtos de três semicondutores: Óxido de Zinco, Silício e Nitreto de Gálio; em três abordagens diferentes. Discutimos também as consequências da distorção de fase em processos não lineares devido à natureza discreta do dispositivo modulador. Primeiramente, investigamos a otimização da emissão excitônica em um cristal de Óxido de Zinco através de uma técnica de otimização que utiliza algoritmo genético, observamos que a fase espectral que otimiza o processo cria um perfil temporal do pulso que indica um acoplamento do tipo éxciton-fônon no cristal. Estudamos ainda o efeito da aplicação de uma máscara de fase senoidal, criando um trem de pulsos, no processo de formação de estruturações superficiais periódicas induzidas a laser no Silício - o fator de eficácia das estruturações foi controlado através dos tempos de separação entre os sub-pulsos, resultado que pôde ser interpretado usando a teoria de Sipe-Drude. Por fim, estudamos a influência da formatação de pulsos em processos de absorção multi-fotônicos em um filme fino de GaN onde verificamos, inicialmente, que o material apresenta um coeficiente de absorção não-linear atípico. Modelamos este comportamento usando equações de taxa e investigamos sua modificação aplicando uma fase quadrática. / Pulse shaping techniques allows the control of spectral and temporal properties of a laser beam, creating new possibilities for the study of the light-matter interaction. In this work we study the nonlinear optical properties, via ultrashort pulses, of three semiconductors; Zinc Oxide, Silicon and Gallium Nitride in three different approaches. We also discuss the consequences of phase distortion in nonlinear processes due to the discrete nature of the light modulator device. Initially, we investigated the optimization of exciton emission in a zinc oxide crystal through using a genetic algorithm; we observed that the spectral phase that optimizes the process creates a temporal pulse profile that indicates an exciton-phonon coupling in the crystal. We also studied the effect of the application of a sinusoidal phase mask, creating a pulse train, in the process of laser induced periodic surface structures in Silicon; the efficacy factor of the produced structures was controlled through the separation time between the sub-pulses and interpreted using the Sipe-Drude theory. Finally, we study the influence of pulse shaping on multi-photon absorption processes in a thin film of GaN; we found, initially, that the material exhibits an atypical nonlinear absorption coefficient. We model this behavior using rate equations and investigate its modification by applying a quadratic phase.
|
42 |
Controle coerente do processo de absorção de dois fótons em compostos orgânicos / Coherent control of two-photon absorption process in organic compoundsSilva, Daniel Luiz da 23 October 2009 (has links)
A larga banda espectral, característica de pulsos ultracurtos de luz laser, tem possibilitado o controle coerente da interação da luz com a matéria através da manipulação das componentes espectrais da fase do pulso. Esta nova área de pesquisa tem sido responsável por avanços no entendimento e controle de fenômenos foto-induzidos, especialmente no que diz respeito a processos ópticos não lineares. Nesta tese de doutorado, estudamos o controle coerente da absorção de dois fótons (A2F) em compostos orgânicos usando pulsos de femtossegundos. O processo de A2F em derivados de perilenos foi investigado utilizando pulsos com chirp linear (máscara de fase quadrática), a partir do monitoramento da fluorescência excitada por dois fótons. A otimização da A2F desses compostos, através da formatação da fase do pulso via algorítmo genético, revelou que pulsos limitados por transformada de Fourier induzem maior A2F. Cálculos de Química Quântica, empregando o formalismo da teoria do funcional densidade, foram utilizados para caracterizar a estrutura eletrônica e determinar as transições permitidas por dois fótons nos derivados de perilenos, fundamentando nossos resultados experimentais. Além disso, estudamos também o controle coerente da A2F de compostos orgânicos aplicando uma máscara de fase senoidal ao pulso. Neste caso, demonstramos que a eficiência do controle depende da posição relativa entre o comprimento de onda central do pulso e da banda de A2F do material. Finalmente, o controle coerente da A2F foi investigado com o uso de uma máscara de fase do tipo degrau. Nossos resultados evidenciam a importância da relação entre a banda espectral do pulso e a largura de linha da A2F do material para atingir o controle da A2F. Em conclusão, os resultados obtidos neste trabalho ajudam a esclarecer aspectos do controle coerente, obtido com pulsos ultracurtos formatados, em sistemas moleculares. / The broad spectral band of ultrashort laser pulses has been used to coherently control the lightmatter interaction, by acting on the spectral phase of pulses using the so called pulse shaping methods. This new research area has been held responsible for advances in the understanding and controlling of photo-induced phenomena, especially in nonlinear optics. In this work, we studied the coherent control of two-photon absorption (2PA) processes in organic compounds, employing femtosecond pulses. We investigated the 2PA of perylene derivatives using chirped pulses (quadratic phase mask), by monitoring the two-photon excited fluorescence. Optimization of 2PA in perylene derivatives was achieved by shaping the pulse using a genetic algorithm, which revealed that Fourier transform limited pulses lead to higher 2PA. Quantum chemical calculations, using Density Functional Theory, were carried out to characterize the electronic structure and determine the allowed two-photon transitions of perylene derivatives, backing up our experimental results. Furthermore, we also studied the coherent control of 2PA in organic molecules applying a cosine-like phase mask. In such case, we demonstrated that the control efficiency depends on the detuning between the pulse central wavelength and materials 2PA band. Finally, coherent control of 2PA was explored using a step-like phase mask. Our results indicate that, in this situation, control of 2PA is only attained if a specific ratio between the pulse bandwidth and the 2PA transition bandwidth is used. In conclusion, the results obtained in this work help the understanding of coherent control in molecular systems.
|
43 |
Optical arbitrary waveform generation using chromatic dispersion in silica fibersVon Eden, Elric Omar 14 June 2007 (has links)
A novel approach to optical pulse shaping and arbitrary waveform generation (OAWG) using time-domain spectral shaping (TDSS) in negative and positive dispersion in commercial optical fibers has been proposed and evaluated. In order to study the pulse shaping capability of this OAWG system, mathematical analysis was used to determine expressions for the expected output waveform under certain assumptions. Then, Matlab code was developed to model the propagation of an optical signal through a fiber with arbitrary characteristics as well as optical modulation using an electro-optic modulator. The code was first benchmarked to several well-known theoretical systems to ensure that it produced accurate results, and then it was used to examine the ability of this novel OAWG approach to generate different waveforms under various conditions. The results of numerous simulations are presented and used to qualitatively examine the ability of this system to perform OAWG in a real-world setting.
Based on the results of simulations, mathematical modeling, as well as previous research in this area, it was determined that higher-order fiber dispersion could be a limitation to the time-bandwidth product and pulse shaping fidelity of this pulse shaping method. Additional dispersion compensation techniques were devised to help overcome these limitations such as the use of multiple dispersion-compensating fibers and spectral phase modulation. An OAWG system employing these techniques was also simulated using the developed Matlab code. Using these results, the possibility and feasibility of employing this system in various pulse shaping applications such as optical communications, are discussed and analyzed. Limitations of the system are also investigated, and methods to improve the system for future applications are suggested.
|
44 |
Pulsos láser de femtosegundo en espectroscopía y microscopía de dos fotonesCoello, Yves, Dantus, Marcus 25 September 2017 (has links)
Se describe la aplicación de pulsos láser ultracortos (≤10fs) en espectroscopía y microscopía de dos fotones llevada a cabo en nuestro grupo de investigación, subrayando las ventajas y requerimientos de este enfoque. Además se presenta una breve descripción de la manipulación de pulsos, de las distorsiones de fase experimentadas por los pulsos láser de femtosegundo y de cómo corregir tales distorsiones utilizando manipuladores de pulsos. / Femtosecond laser pulses in two-photon spectroscopy and microscopy: The application of shaped ultrashort laser pulses (≤10fs) in two-photon spectroscopy and microscopy carried out in our group is described, highlighting the advantages and requirements of this approach. In addition, a brief description of pulse shaping, phase distortions experienced by femtosecond laser pulses and how to correct these distortions using a pulse shaper is also presented.
|
45 |
Controle coerente do processo de absorção de dois fótons em compostos orgânicos / Coherent control of two-photon absorption process in organic compoundsDaniel Luiz da Silva 23 October 2009 (has links)
A larga banda espectral, característica de pulsos ultracurtos de luz laser, tem possibilitado o controle coerente da interação da luz com a matéria através da manipulação das componentes espectrais da fase do pulso. Esta nova área de pesquisa tem sido responsável por avanços no entendimento e controle de fenômenos foto-induzidos, especialmente no que diz respeito a processos ópticos não lineares. Nesta tese de doutorado, estudamos o controle coerente da absorção de dois fótons (A2F) em compostos orgânicos usando pulsos de femtossegundos. O processo de A2F em derivados de perilenos foi investigado utilizando pulsos com chirp linear (máscara de fase quadrática), a partir do monitoramento da fluorescência excitada por dois fótons. A otimização da A2F desses compostos, através da formatação da fase do pulso via algorítmo genético, revelou que pulsos limitados por transformada de Fourier induzem maior A2F. Cálculos de Química Quântica, empregando o formalismo da teoria do funcional densidade, foram utilizados para caracterizar a estrutura eletrônica e determinar as transições permitidas por dois fótons nos derivados de perilenos, fundamentando nossos resultados experimentais. Além disso, estudamos também o controle coerente da A2F de compostos orgânicos aplicando uma máscara de fase senoidal ao pulso. Neste caso, demonstramos que a eficiência do controle depende da posição relativa entre o comprimento de onda central do pulso e da banda de A2F do material. Finalmente, o controle coerente da A2F foi investigado com o uso de uma máscara de fase do tipo degrau. Nossos resultados evidenciam a importância da relação entre a banda espectral do pulso e a largura de linha da A2F do material para atingir o controle da A2F. Em conclusão, os resultados obtidos neste trabalho ajudam a esclarecer aspectos do controle coerente, obtido com pulsos ultracurtos formatados, em sistemas moleculares. / The broad spectral band of ultrashort laser pulses has been used to coherently control the lightmatter interaction, by acting on the spectral phase of pulses using the so called pulse shaping methods. This new research area has been held responsible for advances in the understanding and controlling of photo-induced phenomena, especially in nonlinear optics. In this work, we studied the coherent control of two-photon absorption (2PA) processes in organic compounds, employing femtosecond pulses. We investigated the 2PA of perylene derivatives using chirped pulses (quadratic phase mask), by monitoring the two-photon excited fluorescence. Optimization of 2PA in perylene derivatives was achieved by shaping the pulse using a genetic algorithm, which revealed that Fourier transform limited pulses lead to higher 2PA. Quantum chemical calculations, using Density Functional Theory, were carried out to characterize the electronic structure and determine the allowed two-photon transitions of perylene derivatives, backing up our experimental results. Furthermore, we also studied the coherent control of 2PA in organic molecules applying a cosine-like phase mask. In such case, we demonstrated that the control efficiency depends on the detuning between the pulse central wavelength and materials 2PA band. Finally, coherent control of 2PA was explored using a step-like phase mask. Our results indicate that, in this situation, control of 2PA is only attained if a specific ratio between the pulse bandwidth and the 2PA transition bandwidth is used. In conclusion, the results obtained in this work help the understanding of coherent control in molecular systems.
|
46 |
Estudo das propriedades ópticas não-lineares de semicondutores através da formatação de pulsos / Study of nonlinear optical properties of semiconductors via pulse shapingRenato Juliano Martins 14 March 2017 (has links)
Técnicas de formatação de pulsos permitem o controle das propriedades espectrais e temporais de um feixe laser criando novas possibilidades de estudo da interação luz-matéria. Neste trabalho estudamos as propriedades ópticas não-lineares via formatação de pulsos ultracurtos de três semicondutores: Óxido de Zinco, Silício e Nitreto de Gálio; em três abordagens diferentes. Discutimos também as consequências da distorção de fase em processos não lineares devido à natureza discreta do dispositivo modulador. Primeiramente, investigamos a otimização da emissão excitônica em um cristal de Óxido de Zinco através de uma técnica de otimização que utiliza algoritmo genético, observamos que a fase espectral que otimiza o processo cria um perfil temporal do pulso que indica um acoplamento do tipo éxciton-fônon no cristal. Estudamos ainda o efeito da aplicação de uma máscara de fase senoidal, criando um trem de pulsos, no processo de formação de estruturações superficiais periódicas induzidas a laser no Silício - o fator de eficácia das estruturações foi controlado através dos tempos de separação entre os sub-pulsos, resultado que pôde ser interpretado usando a teoria de Sipe-Drude. Por fim, estudamos a influência da formatação de pulsos em processos de absorção multi-fotônicos em um filme fino de GaN onde verificamos, inicialmente, que o material apresenta um coeficiente de absorção não-linear atípico. Modelamos este comportamento usando equações de taxa e investigamos sua modificação aplicando uma fase quadrática. / Pulse shaping techniques allows the control of spectral and temporal properties of a laser beam, creating new possibilities for the study of the light-matter interaction. In this work we study the nonlinear optical properties, via ultrashort pulses, of three semiconductors; Zinc Oxide, Silicon and Gallium Nitride in three different approaches. We also discuss the consequences of phase distortion in nonlinear processes due to the discrete nature of the light modulator device. Initially, we investigated the optimization of exciton emission in a zinc oxide crystal through using a genetic algorithm; we observed that the spectral phase that optimizes the process creates a temporal pulse profile that indicates an exciton-phonon coupling in the crystal. We also studied the effect of the application of a sinusoidal phase mask, creating a pulse train, in the process of laser induced periodic surface structures in Silicon; the efficacy factor of the produced structures was controlled through the separation time between the sub-pulses and interpreted using the Sipe-Drude theory. Finally, we study the influence of pulse shaping on multi-photon absorption processes in a thin film of GaN; we found, initially, that the material exhibits an atypical nonlinear absorption coefficient. We model this behavior using rate equations and investigate its modification by applying a quadratic phase.
|
47 |
Propagation and Control of Broadband Optical and Radio Frequency Signals in Complex EnvironmentsBohao Liu (6407975) 15 May 2019 (has links)
A complex environment causes strong distortion of the field, inhibiting tasks such as imaging and communications in both the optical and radio-frequency (RF) region. In the optical regime, strong modal dispersion in highly multimode fiber (MMF) results in a scrambled output field in both space (intensity speckles) and time (spectral and temporal speckles). Taking advantage of the pulse shaping technique, spatial and temporal focusing has been achieved in this thesis, offering potential opportunities for nonlinear microscopy and imaging or space-division multiplexed optical communication through MMF. In the RF regime, multipath effect in wireless RF channel gives multiple echoes with random delay and amplitude attenuation at the receiver end. Static channel sounding and compensation with ultra-broadband spread spectrum technique resolves the issue by generating a peaking signal at the receiver, significantly improving the signal-to-noise/interference performance. However, the limited communication speed in the static approach makes it challenging for sounding and compensation in a dynamic channel. Here, we achieve real-time channel sounding and compensation for dynamic wireless multipath channel with 40 micro-seconds refresh rate by using a fast processing field programmable gate array (FPGA) unit, providing potential opportunities for mobile communications in indoor, urban, and other complex environments. Furthermore, by combining broadband photonics and RF radar technologies, a high depth and transverse resolution wide bandwidth (15 GHz) W-band (75 - 110 GHz) photonic monopulse-like radar system for remote target sensing is demonstrated, offering prospects for millimeter wave 3-D sensing and imaging.
|
48 |
Detection and Pulse Shaping of Continuous Wave and Pulsed Broadband LightBolatbek, Zhanibek 18 May 2021 (has links)
No description available.
|
49 |
Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser SystemWillis-Ott, Christina 01 January 2013 (has links)
Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. iv Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 μm respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 μm laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems.
|
50 |
Adaptive techniques for ultrafast laser material processingStoian, Razvan 18 November 2008 (has links) (PDF)
Le besoin d'une très grande précision lors du traitement des matériaux par laser a fortement encouragé le développement des études de l'effet des impulsions ultra brèves pour la structuration des matériaux à une échelle micro et nano métrique. Une diffusion d'énergie minimale et une forte non linéarité de l'interaction permet un important confinement énergétique à des échelles les plus petites possibles. La possibilité d'introduire des changements de phases rapides et même de créer de nouveaux états de matière ayant des propriétés optimisées et des fonctions améliorées donne aux impulsions ultra brèves de sérieux arguments pour être utilisées dans des dispositifs très précis de transformation et de structuration des matériaux. L'étude de ces mécanismes de structuration et, en particulier, de leurs caractéristiques dynamiques, est une clé pour l'optimisation de l'interaction laser-matière suivant de nombreux critères utiles pour les procédés laser : efficacité, précision, qualité. Ce mémoire synthétise les travaux de l'auteur sur l'étude statique et dynamique du dépôt d'énergie ultra rapide, avec application aux procédés laser. La connaissance de la réponse dynamique des matériaux après irradiation laser ultra brève montre que les temps de relaxation pilotent l'interaction lumière-matière. Il est alors possible d'adapter l'énergie déposée à la réponse du matériau en utilisant les toutes récentes techniques de mise en forme spatio temporelle de faisceaux. Un couplage optimal de l'énergie donne la possibilité d'orienter la réponse du matériau vers un résultat recherché, offrant une grande flexibilité de contrôle des procédés et, sans doute, la première étape du développement de procédés « intelligents ».
|
Page generated in 0.0713 seconds