• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconstruction et description des fonctions de distribution d'orientation en imagerie de diffusion à haute résolution angulaire / Reconstruction and description of the orientation distribution function of high angular resolution diffusion imaging

Sun, Changyu 02 December 2014 (has links)
Ce travail de thèse porte sur la reconstruction et la description des fonctions de distribution d'orientation (ODF) en imagerie de diffusion à haute résolution angulaire (HARDI) telle que l’imagerie par q-ball (QBI). Dans ce domaine, la fonction de distribution d’orientation (ODF) en QBI est largement utilisée pour étudier le problème de configuration complexe des fibres. Toutefois, jusqu’à présent, l’évaluation des caractéristiques ou de la qualité des ODFs reste essentiellement visuelle et qualitative, bien que l’utilisation de quelques mesures objectives de qualité ait également été reportée dans la littérature, qui sont directement empruntées de la théorie classique de traitement du signal et de l’image. En même temps, l’utilisation appropriée de ces mesures pour la classification des configurations des fibres reste toujours un problème. D'autre part, le QBI a souvent besoin d'un nombre important d’acquisitions pour calculer avec précision les ODFs. Ainsi, la réduction du temps d’acquisition des données QBI est un véritable défi. Dans ce contexte, nous avons abordé les problèmes de comment reconstruire des ODFs de haute qualité et évaluer leurs caractéristiques. Nous avons proposé un nouveau paradigme permettant de décrire les caractéristiques des ODFs de manière plus quantitative. Il consiste à regarder un ODF comme un nuage général de points tridimensionnels (3D), projeter ce nuage de points 3D sur un plan angle-distance (ADM), construire une matrice angle-distance (ADMAT), et calculer des caractéristiques morphologiques de l'ODF telles que le rapport de longueurs, la séparabilité et l'incertitude. En particulier, une nouvelle métrique, appelé PEAM (PEAnut Metric) et qui est basée sur le calcul de l'écart des ODFs par rapport à l’ODF (représenté par une forme arachide) d’une seule fibre, a été proposée et utilisée pour classifier des configurations intravoxel des fibres. Plusieurs méthodes de reconstruction des ODFs ont également été comparées en utilisant les paramètres proposés. Les résultats ont montré que les caractéristiques du nuage de points 3D peuvent être évaluées d'une manière relativement complète et quantitative. En ce qui concerne la reconstruction de l'ODF de haute qualité avec des données réduites, nous avons proposé deux méthodes. La première est basée sur une interpolation par triangulation de Delaunay et sur des contraintes imposées à la fois dans l’espace-q et dans l'espace spatial. La deuxième méthode combine l’échantillonnage aléatoire des directions de gradient de diffusion, le compressed sensing, l’augmentation de la densité de ré-échantillonnage, et la reconstruction des signaux de diffusion manquants. Les résultats ont montré que les approches de reconstruction des signaux de diffusion manquants proposées nous permettent d'obtenir des ODFs précis à partir d’un nombre relativement faible de signaux de diffusion. / This thesis concerns the reconstruction and description of orientation distribution functions (ODFs) in high angular resolution diffusion imaging (HARDI) such as q-ball imaging (QBI). QBI is used to analyze more accurately fiber structures (crossing, bending, fanning, etc.) in a voxel. In this field, the ODF reconstructed from QBI is widely used for resolving complex intravoxel fiber configuration problem. However, until now, the assessment of the characteristics or quality of ODFs remains mainly visual and qualitative, although the use of a few objective quality metrics is also reported that are directly borrowed from classical signal and image processing theory. At the same time, although some metrics such as generalized anisotropy (GA) and generalized fractional anisotropy (GFA) have been proposed for classifying intravoxel fiber configurations, the classification of the latters is still a problem. On the other hand, QBI often needs an important number of acquisitions (usually more than 60 directions) to compute accurately ODFs. So, reducing the quantity of QBI data (i.e. shortening acquisition time) while maintaining ODF quality is a real challenge. In this context, we have addressed the problems of how to reconstruct high-quality ODFs and assess their characteristics. We have proposed a new paradigm allowing describing the characteristics of ODFs more quantitatively. It consists of regarding an ODF as a general three-dimensional (3D) point cloud, projecting a 3D point cloud onto an angle-distance map (ADM), constructing an angle-distance matrix (ADMAT), and calculating morphological characteristics of the ODF such as length ratio, separability and uncertainty. In particular, a new metric, called PEAM (PEAnut Metric), which is based on computing the deviation of ODFs from a single fiber ODF represented by a peanut, was proposed and used to classify intravoxel fiber configurations. Several ODF reconstruction methods have also been compared using the proposed metrics. The results showed that the characteristics of 3D point clouds can be well assessed in a relatively complete and quantitative manner. Concerning the reconstruction of high-quality ODFs with reduced data, we have proposed two methods. The first method is based on interpolation by Delaunay triangulation and imposing constraints in both q-space and spatial space. The second method combines random gradient diffusion direction sampling, compressed sensing, resampling density increasing, and missing diffusion signal recovering. The results showed that the proposed missing diffusion signal recovering approaches enable us to obtain accurate ODFs with relatively fewer number of diffusion signals.
2

Acquisition compressée en IRM de diffusion / Compressive sensing in diffusion MRI

Merlet, Sylvain 11 September 2013 (has links)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d’accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse. / This thesis is dedicated to the development of new acquisition and processing methods in diffusion MRI (dMRI) to characterize the diffusion of water molecules in white matter fiber bundles at the scale of a voxel. In particular, we focus our attention on the accurate recovery of the Ensemble Average Propagator (EAP), which represents the full 3D displacement of water molecule diffusion. Diffusion models such that the Diffusion Tensor or the Orientation Distribution Function (ODF) are largely used in the dMRI community in order to quantify water molecule diffusion. These models are partial EAP representations and have been developed due to the small number of measurement required for their estimations. It is thus of utmost importance to be able to accurately compute the EAP and order to acquire a better understanding of the brain mechanisms and to improve the diagnosis of neurological disorders. Estimating the full 3D EAP requires the acquisition of many diffusion images sensitized todifferent orientations in the q-space, which render the estimation of the EAP impossible in most of the clinical dMRI scanner. A surge of interest has been seen in order to decrease this time for acquisition. Some works focus on the development of new and efficient acquisition sequences. In this thesis, we use sparse coding techniques, and in particular Compressive Sensing (CS) to accelerate the computation of the EAP. Multiple aspects of the CS theory and its application to dMRI are presented in this thesis.
3

High angular resolution diffusion-weighted magnetic resonance imaging: adaptive smoothing and applications

Metwalli, Nader 07 July 2010 (has links)
Diffusion-weighted magnetic resonance imaging (MRI) has allowed unprecedented non-invasive mapping of brain neural connectivity in vivo by means of fiber tractography applications. Fiber tractography has emerged as a useful tool for mapping brain white matter connectivity prior to surgery or in an intraoperative setting. The advent of high angular resolution diffusion-weighted imaging (HARDI) techniques in MRI for fiber tractography has allowed mapping of fiber tracts in areas of complex white matter fiber crossings. Raw HARDI images, as a result of elevated diffusion-weighting, suffer from depressed signal-to-noise ratio (SNR) levels. The accuracy of fiber tractography is dependent on the performance of the various methods extracting dominant fiber orientations from the HARDI-measured noisy diffusivity profiles. These methods will be sensitive to and directly affected by the noise. In the first part of the thesis this issue is addressed by applying an objective and adaptive smoothing to the noisy HARDI data via generalized cross-validation (GCV) by means of the smoothing splines on the sphere method for estimating the smooth diffusivity profiles in three dimensional diffusion space. Subsequently, fiber orientation distribution functions (ODFs) that reveal dominant fiber orientations in fiber crossings are then reconstructed from the smoothed diffusivity profiles using the Funk-Radon transform. Previous ODF smoothing techniques have been subjective and non-adaptive to data SNR. The GCV-smoothed ODFs from our method are accurate and are smoothed without external intervention facilitating more precise fiber tractography. Diffusion-weighted MRI studies in amyotrophic lateral sclerosis (ALS) have revealed significant changes in diffusion parameters in ALS patient brains. With the need for early detection of possibly discrete upper motor neuron (UMN) degeneration signs in patients with early ALS, a HARDI study is applied in order to investigate diffusion-sensitive changes reflected in the diffusion tensor imaging (DTI) measures axial and radial diffusivity as well as the more commonly used measures fractional anisotropy (FA) and mean diffusivity (MD). The hypothesis is that there would be added utility in considering axial and radial diffusivities which directly reflect changes in the diffusion tensors in addition to FA and MD to aid in revealing neurodegenerative changes in ALS. In addition, applying adaptive smoothing via GCV to the HARDI data further facilitates the application of fiber tractography by automatically eliminating spurious noisy peaks in reconstructed ODFs that would mislead fiber tracking.

Page generated in 0.068 seconds