1 |
Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theorySchönherr, Marek 20 January 2012 (has links)
With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or Hera. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner.
In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive Qed, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision observables in e.g. Drell-Yan production or semileptonic B meson decays. The results obtained for radiative tau and muon decays are also compared to experimental data.
In the second part the resummation scheme introduced by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP), resumming large logarithms associated with the emission of collinear partons applicable to both Qcd and Qed, is combined with fixed-order next-to-leading matrix elements. While the focus rests on its application to Qcd corrections, this combination is discussed in detail and the implementation is presented. The resulting predictions are evaluated and compared to experimental data for a multitude of processes in four different collider environments. This formulation has been further extended to accommodate real emission corrections to beyond next-to-leading order radiation otherwise described only by the DGLAP resummation. Its results are also carefully evaluated and compared to a wide range of experimental data.:1. Introduction
1.1 Event generators
1.2 The event generator Sherpa
1.3 Outline of this thesis
Part I YFS resummation & fixed order calculations
2 Yennie-Frautschi-Suura resummation
2.1 Resummation of virtual photon corrections
2.2 Resummation of real emission corrections
2.3 The Yennie-Frautschi-Suura form factor
3 A process independent implementation in Sherpa
3.1 The Algorithm
3.1.1 The master formula
3.1.2 Phase space transformation
3.1.3 Mapping of momenta
3.1.4 Event generation
3.2 Higher Order Corrections
3.2.1 Approximations for real emission matrix elements
3.2.2 Real emission corrections
3.2.3 Virtual emission corrections
4 The Z lineshape and radiative lepton decay corrections
4.1 The Z lineshape
4.1.1 Radiation pattern
4.1.2 Numerical stability
4.2 Radiative lepton decays
4.3 Summary and conclusions
5 Electroweak corrections to semileptonic B decays
5.1 Tree-level decay
5.2 Next-to-leading order corrections
5.2.1 Matching of different energy regimes
5.2.2 Short-distance next-to-leading order corrections
5.2.3 Long-distance next-to-leading order corrections
5.2.4 Structure dependent terms
5.2.5 Soft-resummation and inclusive exponentiation
5.3 Methods
5.3.1 BLOR
5.3.2 Sherpa/Photons
5.3.3 PHOTOS
5.4 Results
5.4.1 Next-to-leading order corrections to decay rates
5.4.2 Next-to-leading order corrections to differential rates
5.4.3 Influence of explicit short-distance terms
5.5 Summary and conclusions
Part II DGLAP resummation & fixed order calculations
6 DGLAP resummation & approximate higher order corrections
6.1 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation
6.1.1 The naive parton model
6.1.2 QCD corrections to the parton model
6.1.3 Factorisation and the collinear counterterm
6.1.4 The DGLAP equations
6.2 Parton evolution
6.2.1 Approximate real emission cross sections
6.2.2 Parton evolution
6.2.3 Scale choices for the running coupling
6.3 Soft emission corrections
7 The reinterpretation and automisation of the POWHEG method
7.1 Decomposition of the real-emission cross sections
7.2 Construction of a parton shower
7.3 Matrix element corrections to parton showers
7.4 The reformulation of the POWHEG method
7.4.1 Approximate NLO cross sections
7.4.2 The POWHEG method and its accuracy
7.5 The single-singularity projectors
7.6 Theoretical ambiguities
7.7 MC@NLO
7.8 Realisation of the POWHEG method in the Sherpa Monte Carlo
7.8.1 Matrix elements and subtraction terms
7.8.2 The parton shower
7.8.3 Implementation & techniques
7.8.4 Automatic identification of Born zeros
7.9 Results for processes with trivial colour structures
7.9.1 Process listing
7.9.2 Tests of internal consistency
7.9.3 Comparison with tree-level matrix-element parton-shower merging
7.9.4 Comparison with experimental data
7.9.5 Comparison with existing POWHEG
7.10 Results for processes with non-trivial colour structures
7.10.1 Comparison with experimental data
7.11 Summary and conclusions
8 MENLOPS
8.1 Improving parton showers with higher-order matrix elements
8.1.1 The POWHEG approach
8.1.2 The ME+PS approach
8.2 Merging POWHEG and ME+PS - The MENLOPS
8.3 Results
8.3.1 Merging Systematics
8.3.2 ee -> jets
8.3.3 Deep-inelastic lepton-nucleon scattering
8.3.4 Drell-Yan lepton-pair production
8.3.5 W+jets Production
8.3.6 Higgs boson production
8.3.7 W-pair+jets production
8.4 Summary and conclusions
Summary
Appendix
A Details on the YFS resummation implementation
A.1 The YFS-Form-Factor
A.1.1 Special cases
A.2
A.2.1 Avarage photon multiplicity
A.2.2 Photon energy
A.2.3 Photon angles
A.2.4 Photons from multipoles
A.3 Massive dipole splitting functions
A.3.1 Final State Emitter, Final State Spectator
A.3.2 Final State Emitter, Initial State Spectator
A.3.3 Initial State Emitter, Final State Spectator
B Formfactors and higher order matrix elements for semileptonic B decays
B.1 Form factor models of exclusive semileptonic B meson decays
B.1.1 Form factors for B -> D l nu
B.1.2 Form factors for B -> pi l nu
B.1.3 Form factors for B -> D0* l nu
B.2 NLO matrix elements
B.2.1 Real emission matrix elements
B.2.2 Virtual emission matrix elements
B.3 Scalar Integrals
B.3.1 General definitions
B.3.2 Tadpole integrals
B.3.3 Bubble integrals
B.3.4 Triangle integrals
C Explicit form of the leading order Altarelli-Parisi splitting functions
C.1 Collinear limit of real emission matrix elements
C.1.1 q -> gq splittings
C.1.2 q -> qg splittings
C.1.3 g -> qq splittings
C.1.4 g -> gg splittings
Bibliography
|
2 |
QCD+QED simulations with C* boundary conditionsLücke, Jens 14 March 2024 (has links)
Es gibt im Allgemeinen zwei Paradigmen für Entdeckungen in der Teilchenphysik:
direkte und indirekte Suchen. Direkte Suchen zielen darauf ab, klare Signale für vermutete Phänomene zu finden, während indirekte Suchen nach Abweichungen zwischen theoretischen Vorhersagen und experimentellen Messungen suchen. Nach dem Nachweis des Higgs-Bosons, wodurch das Standardmodell der Teilchenphysik vervollständigt wurde, haben sich indirekte Suchen als besonders relevant erwiesen, da direkte Nachweise von Physik jenseits des Standardmodells bei aktuellen Energiebereichen unwahrscheinlich sind. Die Herausforderung besteht darin, die Präzision der theoretischen Vorhersagen zu erhöhen, um mögliche Diskrepanzen zu erkennen. Hierbei spielen Gitter-QCD Simulationen für die Berechnung nichtperturbativer hadronischer Observablen eine zentrale Rolle. Für Vorhersagen mit subprozentualer Genauigkeit sind Korrekturen durch Strahlungseffekte und Isospin-Brechung zunehmend wichtig, was durch die Simulation von QCD+QED erreicht wird. Die Einbeziehung von QED stellt neue technische Herausforderungen dar. Diese Arbeit fokussiert sich auf einen Ansatz, der QED-Probleme in endlichen Volumina löst und dabei Eichinvarianz, Lokalität und Translationssymmetrie wahrt, bekannt als QED mit C-Paritäts-Randbedingungen (QED$_C$). Es werden erste umfangreiche QCD+QED$_C$-Simulationen analysiert, darunter acht Eichfeld-Ensembles mit unterschiedlichen Werten der renormierten elektrischen Kopplung, jedoch gleicher Pionenmasse und Gitterabstand. Außerdem wird auf die Einstellung (tuning) der Eingabeparameter für Gittersimulationen eingegangen, um reale physikalische Verhältnisse zu reproduzieren, sowie eine optimierte Strategie mittels Neugewichtung (reweighting) der nackten Quarkmassen im Kontext des RHMC-Algorithmus vorgestellt und evaluiert. / Particle physics research employs two primary approaches for discoveries: direct and indirect searches. Direct searches aim to directly observe phenomena, while indirect searches seek discrepancies between theoretical predictions and experimental results. With the discovery of the Higgs boson, the standard model of particle physics was completed, shifting the focus towards indirect searches due to the lack of compelling evidence for new physics at current energy scales. These searches necessitate highly precise theoretical predictions, particularly for non-perturbative hadronic observables, which are calculated using lattice QCD simulations. The need for sub-percent precision has highlighted the importance of accounting for radiative and isospin-breaking corrections, leading to the simulation of fully dynamical QCD+QED.
This thesis addresses the challenges of incorporating QED into lattice QCD, focusing on an approach that maintains gauge invariance, locality, and translational invariance using QED with C-parity boundary conditions (QED$_C$). It presents a comprehensive technical analysis of the first large-scale QCD+QED$_C$ simulations, detailing eight fully dynamical gauge field ensembles with various renormalized electric coupling values ($\alpha_\mathrm{R} \in \{0,1/137,0.04\}$), consistent pion mass ($m_\pi \approx 400$ MeV), and lattice spacing ($a\approx 0.05$ fm). The thesis examines the stability of the simulation algorithm, finite volume effects, and the behavior of different hadron masses.
Furthermore, it elaborates on the tuning of input parameters for lattice simulations to replicate real-world physics accurately, focusing on the hadronic renormalization scheme used to fix bare quark masses. It introduces an optimized strategy for tuning QCD+QED parameters via mass reweighting, adapted for simulations using the RHMC algorithm, highlighting its development, implementation, and testing.
|
Page generated in 0.0247 seconds