• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 12
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging / Ingénierie à l’échelle nanométrique d’hétérostructures à base de semiconducteurs pour l’optique non-linéaire quadratique et l’imagerie multiphotonique

Zieliński, Marcin 09 February 2011 (has links)
Les phénomènes de diffusion cohérente non-linéaire ont été récemment proposés en alternatives à la fluorescence comme processus de marquage en microscopie multiphotonique. Les matériaux couramment appliqués dans ce contexte buttent toutefois sur une limite inférieure en taille déterminée par le seuil de détection de signaux faibles en optique non-linéaire. Aucun des efforts récents en détection en génération de second-harmonique (GSH), qui est le processus non-linéaire d’ordre le plus bas, n’a permis de descendre à ce jour au-dessous d’une barrière en taille de 40nm même en ayant recours aux techniques de détection les plus sensibles telles que le comptage de photons uniques. Les nanoparticules (NPs) restent ainsi dans la famille des nano-diffuseurs de “grande“ taille. Il apparaît toutefois possible de déplacer de façon significative cette limite inférieure vers les plus petites tailles en substituant aux isolants diélectriques ou aux semi-conducteurs à grands gaps des particules quantiques (PQs) à base de semi-conducteurs à gaps directs.Dans ce travail, un nouveau type de nanosondes hautement non-linéaires a été conçu et développé de façon à franchir cette barrière de taille minimale pour atteindre l’échelle de nanoparticules uniques. Nous considérons ainsi l’excitation résonnante à deux photons de nanoparticules quantiques individuelles à base de CdTe (de la famille des “zinc-blendes”) d’un diamètre d’environ 12.5nm, qui fournissent une émission cohérente efficace par GSH jusqu’à hauteur de 105 comptages de photons par seconde. Elles présentent de plus l’avantage d’une remarquable sensibilité à l’orientation de leur réseau cristallin octupolaire.De plus, il a été démontré que les effets de confinement quantique déterminent fortement les caractéristiques de la susceptibilité non-linéaire du second-ordre χ(2). La caractérisation quantitative du χ(2) des PQs, en particulier leur dispersion spectrale et leur dépendance en taille est menée par spectroscopie de particules uniques ainsi qu’en moyenne d’ensemble par diffusion Hyper-Rayleigh (HRS). Nous fournissons en particulier la preuve que sous certaines conditions, le χ(2) de structures à base de semi-conducteurs en mode de confinement quantique peut très largement dépasser sa valeur en milieu massif. De plus, un nouveau type de PQs hybridant des semi-conducteurs en géométries de type “bâtonnet sur sphère” (BS) a été développé sur la base de composantes cristallines de symétries différentes, afin d’augmenter leur non-linéarité quadratique effective, tout en maintenant leur taille dans un régime proche d’un fort confinement quantique. Le nouveau tenseur hybride complexe χ(2) est analysé en terme d’interférence des susceptibilités constitutives, en prenant en compte les différentes formes et symétries associées aux composantes octupolaires et dipolaires.Il en résulte pour de telles structures une exaltation significative du χ(2), qui excède celle des PQs à constituant unique compte tenu du couplage entre matériaux non-linéaires et d’un temps de décohérence plus long, que nous attribuons à un effet de separation de charge photo-induit. / Nonlinear coherent scattering phenomena from single nanoparticles have been recently proposed as alternative processes for fluorescence in multiphoton microscopy staining. Commonly applied nanoscale materials, however, have reached a certain limit in size dependent detection efficiency of weak nonlinear optical signals. None of the recent efforts in detection of second-harmonic generation (SHG), the lowest order nonlinear process, have been able to cross a ~40 nm size barrier for nanoparticles (NPs), thus remaining at the level of “large” nanoscatterers, even when resorting to the most sensitive detection techniques such as single-photon counting technology. As we realize now, this size limitation can be significantly lowered when replacing dielectric insulators or wide gap semiconductors by direct-gap semiconducting quantum dots (QDs). Herein, a new type of highly nonlinear nanoprobes is engineered in order to surpass above mentioned size barrier at the single nanoparticle scale. We consider two-photon resonant excitation in individual zinc-blende CdTe QDs of about 12.5 nm diameter, which provide efficient coherent SHG radiation, as high as 105 Hz, furthermore exhibiting remarkable sensitivity to spatial orientation of their octupolar crystalline lattice. Moreover, quantum confinement effects have been found to strongly contribute to the second-order nonlinear optical susceptibility χ(2) features. Quantitative characterization of the χ(2) of QDs by way of their spectral dispersion and size dependence is therefore undertaken by single particle spectroscopy and ensemble Hyper-Rayleigh Scattering (HRS) studies. We prove that under appropriate conditions, χ(2) of quantum confined semiconducting structures can significantly exceed that of bulk. Furthermore, a novel type of semiconducting hybrid rod-on-dot (RD) QDs is developed by building up on crystalline moieties of different symmetries, in order to increase their effective quadratic nonlinearity while maintaining their size close to a strong quantum confinement regime. The new complex hybrid χ(2) tensor is analyzed by interfering the susceptibilities from each component, considering different shape and point group symmetries associated to octupolar and dipolar crystalline structures. Significant SHG enhancement is consequently observed, exceeding that of mono-compound QDs, due to a coupling between two nonlinear materials and slower decoherence, which we attribute to the induced spatial charge separation upon photoexcitation.
22

Colloidal Synthesis and Optical Characterizations of Semiconductor Nanocrystals from Nontoxic Elements

Ho, Minh Q 01 January 2015 (has links)
To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI semiconductors to more environmentally friendly materials. Among Group II-V semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, Si) materials, for future applications in photovoltaics and optoelectronics. This work is dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal structure, size and dispersity by adjusting different reaction parameters such as temperature, time and solvent composition. Different characterizations will also be employed to probe the size- and composition-dependent physical and optical properties of resulting products. The first part of this work illustrates the synthesis of luminescent Zn3P2 nanocrystals, an earth-abundant and a direct-gap semiconductor possessing high absorption coefficient and long carrier diffusion length, which uphold promising potential in many optoelectronic applications. A hot injection method by using highly reactive P and Zn precursors (P[Si(CH3)3]3 and diethyl zinc) in hexadecylamine and octadecene was developed to prepare a series of alkyl-amine-passivated tetragonal Zn3P2 crystallites with varying size sizes. Substantial blue shifts in the absorption onsets (2.11−2.73 eV) in comparison to the bulk counterpart (1.4−1.5 eV) and a clear red shift with increasing particle size indicates the quantum confinement effects. This is also consistent with the photoluminescent studies with the size-tunable maxima in the visible region (469−545 nm) as a function of growth temperature and time. The phase purity and alkyl-amine passivation of the nanocrystals were determined by structural and surface analysis, confirming the presence of N–Zn and N–P bonds on the tetragonal Zn3P2 crystallites. The second part of this works focuses on the development of a colloidal synthetic strategy of alkyl-amine capped Si1-xGex nanocrystals with control over size- and composition-dependent optical properties. Despite their high miscibility at all compositions, developing a wet-chemical synthesis of Si1-xGex alloys in the nanoscale remains a challenging task, owing to the difference of their crystallization temperatures and the high surface oxidation of Si. Thus an adapted colloidal method is utilized to fabricate single-element Ge and Si nanocrystals. Powder X-ray diffraction indicates successful production of cubic crystalline Ge and amorphous Si nanoparticles individually in oleylamine/octadecene (surfactant/solvent) mixture at 300°C. Absorption onset values of 1.28 eV and 3.11 eV are obtained for resulting Ge and Si colloids, respectively. By alloying these two materials in their nano-regime, tunable optical properties can be achieved throughout the visible to the near IR region by simply varying their elemental compositions. The success of this bandgap engineering process offers more options for new material design by taking advantage of unique properties from each component material.
23

Orts- und zeitaufgelöste optische Spektroskopie an Silizium-Nanokristallen

Martin, Jörg 20 December 2004 (has links) (PDF)
Gegenstand der Dissertation sind Untersuchungen zur Photolumineszenz von Silizium-Nanokristallen. Den Schwerpunkt bilden dabei die Messungen an isolierten Partikeln mittels konfokaler Mikroskopie und optischer Spektroskopie. Von einzelnen Silizium-Partikeln konnten relativ schmale, strukturierte Photolumineszenzbanden detektiert werden, die die Aussagen des Quantum-Confinement-Modells bestätigen. Ein weiteres Merkmal der Photolumineszenz von einzelnen Halbleiter-Nanopartikeln ist das so genannte Blinken. Die Erstellung von Blinkstatistiken unter verschiedenen Anregungsbedingungen ermöglichte es, die zum Blinken führenden photophysikalischen Prozesse genauer zu charakterisieren. Es wird unter anderem gezeigt, dass das reversible Bleichen der Lumineszenz von Silizium-Nanokristall-Ensemblen und porösem Silizium auf ein instationäres Blinkverhalten zurückzuführen ist. Abschließend werden Bezüge zu den astrophysikalischen Beobachtungen von der Extended Red Emission hergestellt und verschiedene Tunnel- und Random-Walk-Modelle zur Beschreibung der photophysikalischen Prozesse diskutiert.
24

Αλληλεπίδραση ηλεκτρομαγνητικής ακτινοβολίας με νανοδομημένους ημιαγωγούς

Καπακλής, Βασίλειος Σ. 01 September 2008 (has links)
Το αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η αλληλεπίδραση της ηλεκτρομαγνητικής ακτινοβολίας με νανοδομημένους ημιαγωγούς. Για το σκοπό αυτό σχεδιάστηκε και κατασκευάστηκε μια διάταξη καταγραφής φασμάτων φωτοφωταύγειας, συναρτήσει της θερμοκρασίας. Τα δείγματα που εξετάστηκαν περιέχουν νανοκρυστάλλους του πυριτίου. Ερευνήθηκαν δυο διαφορετικές προσεγγίσεις για την παρασκευή τέτοιων δειγμάτων. Η πρώτη αφορά την θερμική αποσύνθεση του SiO σε θερμοκρασίες άνω των 850 ºC και οδηγεί στην παρασκευή δειγμάτων με νανοκρυστάλλους πυριτίου σε μια μήτρα από οξείδιο του πυριτίου. Η δεύτερη είναι ο σχηματισμός πορώδους πυριτίου μέσω ανοδικής ηλεκτροδιάβρωσης, τόσο σε συνθήκες ανοδικής πόλωσης, όσο και σε συνθήκες ανοιχτού κυκλώματος. Τα δείγματα που προήλθαν από θερμική αποσύνθεση του SiO επιδεικνύουν έντονη φωτοφωταύγεια, σε θερμοκρασία περιβάλλοντος, στο εγγύς υπέρυθρο και σε ενέργειες μεγαλύτερες του ενεργειακού χάσματος του πυριτίου (1.12 eV), ως αποτέλεσμα της εξιτονικής επανασύνδεσης υπό συνθήκες κβαντικού εντοπισμού. Τα φάσματα φωτοφωταύγειας και ο δομικός χαρακτηρισμός, έδωσαν χρήσιμες πληροφορίες σχετικά με την αλληλεπίδραση και προέλευση της εκπεμπόμενης ακτινοβολίας, της δομής και κινητικής του SiO που υπόκειται σε θερμική αποσύνθεση. Με την παρασκευή πορώδους πυριτίου, αναπτύχθηκε μια νέα μεθοδολογία για την ανάπτυξη μικροδομών πορώδους πυριτίου σε συνθήκες ανοιχτού κυκλώματος, με απολύτως ελεγχόμενη γεωμετρία και ιδιότητες φωτοφωταύγειας. Η μεθοδολογία αυτή είναι ενδιαφέρουσα για την ανάπτυξη μιας πληθώρας μικρο-ηλεκτρομηχανικών συστημάτων βασισμένα στο πορώδες πυρίτιο, όπως οπτοηλεκτρονικές διατάξεις και αισθητήρες. / The objective of this Thesis is the study of the interaction of electromagnetic radiation with nanostructured semiconductors. For this purpose we have designed and constructed a photoluminescence setup for the recording of spectra at various temperatures. The samples that have been investigated contain nanocrystals of silicon. We investigated two different approaches for the synthesis of such samples. The first one involves the thermal decomposition of SiO at temperatures above 850 ºC and results in silicon nanocrystals embedded in silicon oxide matrix. The second is the formation of porous silicon using the anodic dissolution of silicon under external anodic bias, as well as under open circuit potential conditions. Samples prepared by thermal decomposition of SiO exhibit strong photoluminescence, at room temperature, in the near infrared and at energies higher than the band gap of bulk silicon (1.12 eV), as a result of excitonic recombination under quantum confinement conditions. The recorded spectra and the structural characterization, gave us valuable information about the interaction, the origin of the emitted radiation, the structure and the kinetics of SiO undergoing thermal decomposition. The investigations concerning the formation of porous silicon, resulted in the development of a novel technique for the formation of porous silicon microstructures under open circuit potential conditions. The microstructure geometry and photoluminescence characteristics can be tuned. This technique is interesting for the fabrication of a variety of micro-electromechanical systems, based on porous silicon, such as optoelectronic devices and sensors.
25

Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging

Zieliński, Marcin 09 February 2011 (has links) (PDF)
Nonlinear coherent scattering phenomena from single nanoparticles have been recently proposed as alternative processes for fluorescence in multiphoton microscopy staining. Commonly applied nanoscale materials, however, have reached a certain limit in size dependent detection efficiency of weak nonlinear optical signals. None of the recent efforts in detection of second-harmonic generation (SHG), the lowest order nonlinear process, have been able to cross a ~40 nm size barrier for nanoparticles (NPs), thus remaining at the level of "large" nanoscatterers, even when resorting to the most sensitive detection techniques such as single-photon counting technology. As we realize now, this size limitation can be significantly lowered when replacing dielectric insulators or wide gap semiconductors by direct-gap semiconducting quantum dots (QDs). Herein, a new type of highly nonlinear nanoprobes is engineered in order to surpass above mentioned size barrier at the single nanoparticle scale. We consider two-photon resonant excitation in individual zinc-blende CdTe QDs of about 12.5 nm diameter, which provide efficient coherent SHG radiation, as high as 105 Hz, furthermore exhibiting remarkable sensitivity to spatial orientation of their octupolar crystalline lattice. Moreover, quantum confinement effects have been found to strongly contribute to the second-order nonlinear optical susceptibility χ(2) features. Quantitative characterization of the χ(2) of QDs by way of their spectral dispersion and size dependence is therefore undertaken by single particle spectroscopy and ensemble Hyper-Rayleigh Scattering (HRS) studies. We prove that under appropriate conditions, χ(2) of quantum confined semiconducting structures can significantly exceed that of bulk. Furthermore, a novel type of semiconducting hybrid rod-on-dot (RD) QDs is developed by building up on crystalline moieties of different symmetries, in order to increase their effective quadratic nonlinearity while maintaining their size close to a strong quantum confinement regime. The new complex hybrid χ(2) tensor is analyzed by interfering the susceptibilities from each component, considering different shape and point group symmetries associated to octupolar and dipolar crystalline structures. Significant SHG enhancement is consequently observed, exceeding that of mono-compound QDs, due to a coupling between two nonlinear materials and slower decoherence, which we attribute to the induced spatial charge separation upon photoexcitation.
26

Initial and plasmon-enhanced optical properties of nanostructured silicon carbide

Zakharko, Yuriy 30 October 2012 (has links) (PDF)
Nanostructured silicon carbide (SiC) is considered today as a good alternative to the conventional materials for various multidisciplinary applications. In this thesis, SiC nanostructures were elaborated by means of electrochemical etching and laser ablation techniques. The first part of the thesis clarifies size-dependence of optical properties as well as importance of local-field effects onto the photoinduced electronic transitions of SiC nanostructures. In the second part of the thesis strong 15-fold photoluminescence enhancement of SiC nanoparticles is ensured by their near-field interactions with multipolar localized plasmons. Further, 287-fold and 72-fold plasmon-induced enhancement factors of two-photon excited luminescence and second harmonic generation is achieved, respectively. The main physical mechanisms responsible for the observed effects were described by three-dimensional finite-difference time domain simulations. Finally, the coupling effect of luminescent SiC nanoparticles to plasmonic nanostructures is used in the enhanced labelling of biological cells on the planar structures. As a perspective, colloidal plasmonic (Au@SiO2)SiC nanohybrids were elaborated and characterized.
27

Sistemas químicos nanoestruturados = nanopartículas caroço-casca em suporte poroso funcional e filmes finos alternados de óxidos semicondutores (TiO2, MoO3, WO3) / Nanostructutred chemical systems : core-shell nanoparticles in functional porous support and alternate thin films of semiconductors oxide (TiO2, MoO3, WO3)

Santos, Elias de Barros 19 August 2018 (has links)
Orientador: Ítalo Odone Mazali / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-19T10:30:04Z (GMT). No. of bitstreams: 1 Santos_EliasdeBarros_D.pdf: 21364667 bytes, checksum: 387f64757c1773196fb26d80d6304b52 (MD5) Previous issue date: 2011 / Resumo: Este trabalho de tese é referente à preparação e caracterização de sistemas nanoestruturados na forma de nanopartículas caroço-casca e filmes finos alternados dos óxidos semicondutores: TiO2, MoO3 e WO3. Para tal finalidade foram preparadas nanopartículas monocomponentes individuais dos três óxidos mencionados (PVG/TiO2, PVG/MoO3 e PVG/WO3) e nanopartículas caroço-casca bicomponentes (PVG/TiO2-MoO3, PVG/MoO3-TiO2 e PVG/TiO2-WO3), usando o vidro poroso Vycor® (PVG) como suporte. Também foram preparados filmes finos individuais e alternados de TiO2 e MoO3. Para a síntese das nanopartículas foram feitas impregnações do PVG com soluções precursoras dos compostos di-(propóxido)-di-(2-etilhexanoato) de titânio (IV) em hexano, 2-etilhexanoato de molibdênio (VI) em hexano e do composto di-[hexaquis(m-acetato)triacetato(m3-oxo)tritungstênio(III, III, IV) em água. Foi empregado o procedimento de ciclos de impregnação-decomposição sucessivos, que consiste em repetir, empregando o mesmo suporte poroso, o procedimento de impregnação do composto e sua posterior decomposição térmica. Com este método foi possível controlar o tamanho das nanopartículas, que seguido da alternância dos precursores envolvidos em cada ciclo levou a obtenção de nanopartículas compostas por bicamadas (caroço-casca). Os sistemas de nanopartículas foram caracterizados pelas técnicas de espectroscopia Raman, espectroscopia UV-Vis no modo de refletância difusa, difração de raios X usando radiação síncrotron e microscopia eletrônica de transmissão de alta resolução. As nanopartículas individuais PVG/TiO2, PVG/MoO3 e PVG/WO3 e as nanopartículas caroço-casca PVG/TiO2-MoO3, PVG/MoO3-TiO2 e PVG/TiO2-WO3 exibiram efeitos de confinamento quântico por tamanho. Os resultados de caracterização mostraram que a variação do número de ciclos de impregnação-decomposição permitiu controlar o diâmetro do caroço e a espessura da casca, evidenciando as potencialidades das técnicas de caracterização para tal finalidade. Este resultado mostrou que o método de decomposição de precursores metalorgânicos, aliado ao procedimento de ciclos de impregnação-decomposição, mostrou-se eficiente na obtenção de nanopartículas caroço-casca hierarquicamente organizadas. Os filmes finos de TiO2 e MoO3, individuais e alternados, foram depositados sobre substratos de quartzo a partir de ciclos sucessivos de deposição-decomposição alternados, empregando-se a técnica de dip coating. Os filmes finos foram caracterizados por perfilometria óptica, espectroscopia UV-Vis no modo de refletância difusa, espectroscopia Raman, microscopia Raman Confocal, microscopia de força atômica e microscopia eletrônica de varredura com análise espectroscópica de dispersão de energia. Os filmes finos alternados bicomponentes são formados por uma estrutura bicamada entre os dois óxidos componentes. Apesar da maior dimensão dos filmes finos, escala micrométrica, em comparação com as nanopartículas caroço-casca, escala nanométrica, foi possível identificar por espectroscopia Raman a presença dos dois óxidos mostrando que a camada do componente superior não suprime o sinal Raman do componente inferior / Abstract: This work reports the synthesis and characterization of nanostructured systems - core-shell nanoparticles and alternate thin films - based on the semiconductor oxides: TiO2, MoO3 and WO3. For this purpose, individual monocomponent nanoparticles (PVG/TiO2, PVG/MoO3 and PVG/WO3) and bicomponent core-shell nanoparticles (PVG/TiO2-MoO3, PVG/MoO3-TiO2 and PVG/TiO2-WO3) of the above mentioned oxides using porous Vycor® glass (PVG) as support were synthesized. Also, individual thin films and alternate thin films of TiO2 and MoO3 were prepared. For the nanoparticles synthesis, the procedure used was based on the impregnation of PVG pieces with titanium (IV) di-(n-propoxy)-di-(2-ethylhexanoate) in hexane, molybdenum (VI) 2-ethylhexanoate in hexane, or di-[hexakis(m-acetato)triacetate(m3-oxo)tritungstato of hexakis(m-acetate)triaquo(m3-oxo)tritungsten(III, III, IV) in water, followed by thermal decomposition. This procedure, successively repeated over the same PVG piece, was named impregnation-decomposition cycle. With this method it was possible to control the nanoparticles size, and by alternating the metallo-organic precursors used, it was possible to obtain nanoparticles with core-shell architecture. Nanoparticle-based systems were characterized by Raman and diffuse reflectance UV-Vis spectroscopies, powder X-ray diffraction using synchrotron radiation and high resolution transmission electron microscopy. Individual nanoparticles PVG/TiO2, PVG/MoO3 and PVG/WO3 and the core-shell nanoparticles PVG/TiO2-MoO3, PVG/MoO3-TiO2 and PVG/TiO2-WO3 are under quantum confinement regime. Characterization showed that the change in the impregnation-decomposition cycle number enables one to control the core size and shell thickness, showing the potential characterization for this purpose. This result showed that metallo-organic decomposition method and impregnation-decomposition cycle procedure is efficient to prepare organized hierarchically core-shell nanoparticle. Thin films of individual and alternated TiO2 and MoO3 were prepared by dip coating of the Ti(IV) and Mo(VI) metallo-organic precursors listed above over quartz slides, followed by thermal decomposition. This procedure, successively repeated over the same quartz slide, was named deposition-decomposition cycle. The thin films were characterized by optical profilometry, Raman and diffuse reflectance UV-Vis spectroscopies, confocal Raman microscopy, atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopic analysis. The thin films formed by two-component show bilayered structure between the two oxide components. Despite the differences in dimension between thin films - in micrometer scale - and the supported core-shell nanoparticles - in nanometer scale - Raman spectroscopy was able to identify in both systems the presence of the two oxides, showing that the top layer component does not suppress the Raman signal of the lower component / Doutorado / Quimica Inorganica / Doutor em Ciências
28

The Design and Fabrication of a Microfluidic Reactor for Synthesis of Cadmium Selenide Quantum Dots Using Silicon and Glass Substrates

Gonsalves, Peter Robert 01 February 2012 (has links) (PDF)
A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluidic reactor by using Poly (dimethylsiloxane) (PDMS) as an interface. The reactor was placed on a hot plate at 225oC, creating thermodynamic conditions for the QD chemical reaction to occur within the etched channels. Tygon® tubing transported solutions in and out of the microfluidic reactor. The CdSe solution was injected into the reactor by a syringe pump at an injection rate of 5 mL/hr, with a channel length of 2.5 cm. While in the microfluidic channels, QD residence time of approximately 30 seconds was sufficient enough for nucleation and growth of QDs to occur. The QD size was characterized by fluorescence full-width-half-maximum (FWHM), which is directly proportional to size distribution. The FWHM of the QDs synthesized was 38 nm, with a peak wavelength of 492 nm. By controlling combinations of pump rate and channel length, a range of QD sizes was able to be consistently synthesized through the microfluidic reactor with significant repeatability and reproducibility.
29

Electronic, thermoelectric and vibrational properties of silicon nanowires and copper chalcogenides

Zhuo, Keenan 27 May 2016 (has links)
Silicon nanowires (SiNWs) and the copper chalcogenides, namely copper sulfide (Cu2S) and selenide Cu2Se, have diverse applications in renewable energy technology. For example, SiNWs which have direct band gaps unlike bulk Si, have the potential to radically reduce the cost of Si based photovoltaic cells. However, they degrade quickly under ambient conditions. Various surface passivations have therefore been investigated for enhancing their stability but it is not yet well understood how they affect the electronic structure of SiNWs at a fundamental level. Here, we will explore, from first-principles simulation, how fluorine, methyl and hydrogen surface passivations alter the electronic structures of [111] and [110] SiNWs via strain and quantum confinement. We also show how electronic charge states in [111] and [110] SiNWs can be effectively modelled by simple quantum wells. In addition, we address the issue of why [111] SiNWs are less influenced by their surface passivation than [110] SiNWs. Like SiNWs, Cu2S and Cu2Se also make excellent photovoltaic cells. However, they are most well known for their exceptional thermoelectric performance. This is by virtue of their even more unique solid-liquid hybrid nature which combines the low thermal conductivity and good electrical characteristics required for a high thermoelectric efficiency. We use first-principles molecular dynamics simulations to show that Cu diffusion rates in Cu2S and Cu2Se can be as high as 10-5cm2s-1. We also relate their phonon power spectra to their low thermal conductivities. Furthermore, we evaluate the thermoelectric properties of Cu2S and Cu2Se using a combination of Boltzmann transport theory and first-principles electronic structure calculations. Our results show that both Cu2S and Cu2Se are capable of maintaining high Seebeck coefficients in excess of 200μVK-1 for hole concentrations as high as 3x1020cm-3.
30

Optical and electrical properties of compound and transition metal doped compound semiconductor nanowires

Ramanathan, Sivakumar 11 February 2009 (has links)
Nanotechnology is the science and engineering of creating functional materials by precise control of matter at nanometer (nm) length scale and exploring novel properties at that scale. It is vital to understand the quantum mechanical phenomena manifested at nanometer scale dimensions since that will enable us to precisely engineer quantum mechanical properties to realize novel device functionalities. This dissertation investigates optical and electronic properties of compound and transition metal doped compound semiconductor nanowires with a view to exploiting them for a wide range of applications in semiconductor electronic and optical devices. In this dissertation work, basic concepts of optical and electronic properties at low dimensional structures will be discussed in chapter 1. Chapter 2 discusses the nanofabrication technique employed to fabricate highly ordered nanowires. Using this method, which is based on electrochemical self-assembly techniques, we can fabricate highly ordered and size controlled nanowires and quantum dots of different materials. In Chapter 3, we report size dependent fluorescence spectroscopy of ZnSe and Mn doped ZnSe nanowires fabricated by the above method. The nanowires exhibit blue shift in the emission spectrum due to quantum confinement effect, which increases the effective bandgap of the semiconductor. We found that the fluorescence spectrum of Mn doped ZnSe nanowires shows high luminescence efficiency, which seems to increase with increasing Mn concentration. These results are highly encouraging for applications in multi spectral displays. Chapter 4 investigates field emission results of highly ordered 50 nm tapered ZnO nanowires that were also fabricated by electrochemical self-assembly. Subsequent to fabrication, the nanowires tips are exposed by chemical etching which renders the tips conical in shape. This tapered shape concentrates the electric field lines at the tip of the wires, and that, in turn, increases the emission current density while lowering the threshold field for the onset of field emission. Measurement of the Fowler-Nordheim tunneling current carried out in partial vacuum indicates that the threshold electric field for field emission in 50-nm diameter ZnO nanowires is 15 V/µm. In this study we identified the key constraint that can increase the threshold field and reduce emission current density. In Chapter 5 we report optical and magnetic measurement of Mn-doped ZnO nanowires. Hysterisis measurements carried out at various temperatures show a ferromagnetic behavior with a Curie temperature of ~ 200 K. We also studied Mn-doping of the ZnO nanowires. The room temperature fluorescence spectroscopy of Mn-doped ZnO nanowires shows a red-shift in the spectra compared to the undoped ZnO nanowires possibly due to strain introduced by the dopants in the nanowires. Finally, in Chapter 6, we report our study of the ensemble averaged transverse spin relaxation time (T2*) in InSb thin films and nanowires using electron spin resonance (ESR) measurement. Unfortunately, the nanowires contained too few spins to produce a detectable signal in our apparatus, but the thin films contained enough spins (> 109/cm2) to produce a measurable ESR signal. We found that the T2* decreases rapidly with increasing temperature between 3.5 K and 20 K, which indicates that spin-dephasing is primarily caused by spin-phonon interactions.

Page generated in 0.0373 seconds