1 |
Multi-exciton state in single semiconductor quantum dotsHung, Chun-Yi 02 August 2007 (has links)
The major difference between semiconductor quantum dots and bulk semiconductors is in the quantum confinement effect. It results the controllable exciton¡¦s absorption and emission spectra by tuning the size of the quantum dot. Moreover, multi-exciton states are reported to be observed in the highly symmetric quantum dot systems. In this dissertation, we use the single molecule fluorescence measurement to study the power dependence of multi-exciton state in single CdSe/ZnS semiconductor quantum dots.
At low excitation fluence, anti-bunching behavior, and nearly single exponential relaxation dynamics are observed. By increasing the laser power, bi-exponential fluorescence decay dynamics as well as bunching behaviors from the same QD indicate the fast PL dynamics due to the relaxation from multi-exciton. The results indicate certain threshold
energy level for multi-exciton generation. In addition, the multiple step cascade radiative relaxation processes are observed.
Besides, we modulate linear polarization light to study the excitation orientation dependence. The results indicate the emission dipole of multi-exciton is similar to the single exciton, having a two dimensional
transition dipole plane with c-axis symmetry. However, the absorption dipole of multi-exciton exhibits different orientation dependence from the single exciton.
|
2 |
Real-space pseudopotential calculations for the electronic and structural properties of nanostructuresHan, Jiaxin 28 October 2011 (has links)
Nanostructures often possess unique properties, which may lead to the development of new microelectronic and optoelectronic devices. They also provide an opportunity to test fundamental quantum mechanical concepts such as the role of quantum confinement. Considerable effort has been made to understand the electronic and structural properties of nanostructures, but many fundamental issues remain. In this work, the electronic and structural properties of nanostructures are examined using several new computational methods. The effect of dimensional confinement on quantum levels is investigated for hydrogenated Ge <110> using the plane-wave density-functional-theory pseudopotential method. We present a real-space pseudopotential method for calculating the electronic structure of one-dimensional periodic systems such as nanowires. As an application of this method, we examine H-passivated Si nanowires. The band structure and heat of formation of the Si nanowires are presented and compared to plane wave methods. Our method is able to offer the same accuracy as the traditional plane wave methods, but offers a number of computational advantages such as the ability to handle large systems and a better ease of implementation for highly parallel platforms.
Doping is important to many potential applications of nano-regime semiconductors. A series of first-principles studies are conducted on the P-doped Si <110> nanowires by the real-space pseudopotential methods. Nanowires of varied sizes and different doping positions are investigated. We calculate the binding energies of P atoms, band gaps of the wires, energetics of P atoms in different doping positions and core-level shift of P atoms. Defect wave functions of P atoms are also analyzed. In addition, we study the electronic properties of phosphorus-doped silicon <111> nanofilms using the real-space pseudopotential method. Nanofilms with varied sizes and different doping positions are investigated. We calculate the binding energies of P atoms, band gaps of the films, and energetics of P atoms in different doping positions. Quantum confinement effects are compared with P-doped Si nanocrystals and as well as nanowires. We simulate the nanofilm STM images with P defects in varied film depths, and make a comparison with the experimental measurement. / text
|
3 |
Estudo das propriedades estruturais e ópticas em materiais nanoestruturados a base de silício. / Study of structural and optical properties in nanostructured silicon based films.Ribeiro, Márcia 11 May 2009 (has links)
Esta tese de doutorado tem por objetivo aprofundar as pesquisas realizadas no mestrado, a saber, da caracterização e estudo das propriedades estruturais e ópticas de filmes de oxinitreto de silício (SiOxNy:H) ricos em silício depositados pela técnica de deposição química a vapor assistida por plasma a baixa temperatura (PECVD). Os resultados obtidos no mestrado indicaram que os filmes de SiOxNy:H ricos em silício apresentam emissão luminescente na faixa do visível cuja intensidade e freqüência de emissão estão em correlação com o excesso de silício. Os resultados sugeriram que o excesso de silício na matriz do SiOxNy:H estava disposto na forma de aglomerados de silício de dimensões nanométricas responsáveis por efeitos de tamanho quântico bem como a estados radiativos na interface dos aglomerados com a matriz isolante. Neste trabalho a fim de avaliar o efeito da separação de fases, do tamanho quântico, e da interface, foram produzidos sistemas nanoestruturados a base de silício com total e parcial separação de fases para caracterizar e analisar suas propriedades ópticas e estruturais e compará-las com as dos filmes ricos em silício. Assim foram produzidas multicamadas de a-Si:H de poucos nanômetros de espessura com materiais dielétricos. Em algumas destas multicamadas foi promovida a mistura parcial das camadas por meio de bombardeamento iônico. O estudo nas estruturas de multicamadas permitiu caracterizar e analisar as propriedades estruturais e ópticas de materiais nanoestruturados com total e parcial separação de fases para posteriormente contrastá-los com as características dos filmes de oxinitreto de silício ricos em silício. A fim de analisar a influência da interface nas propriedades ópticas destes sistemas as multicamadas foram fabricadas com dois dielétricos diferentes: o óxido de silício e o ni treto de silício. A espessura das camadas dielétricas foi mantida fixa entanto que a das camadas de silício foi variada para avaliar efeitos de confinamento no silício. A caracterização foi feita utilizando técnicas de absorção óptica no UV-Vis, absorção no infravermelho (FTIR), espectroscopia Raman, fotoluminescência (PL), espectroscopia de absorção de raios X próximos 7 à borda do silício (XANES), e microscopia eletrônica de transmissão de alta resolução (HRTEM). Da análise dos resultados concluiu-se que o confinamento é fundamental para a existência da emissão luminescente embora o tipo de interface influencie a energia e a intensidade da emissão. A análise comparativa com as multicamadas permitiu verificar que os filmes de oxinitreto de silício ricos em silício apresentam, separação parcial de fases já como depositados, os tratamentos térmicos promovem a segregação do silício aumentando conseqüentemente a separação de fases. / The aim of this doctorate thesis is to enhance the knowledge in the research conducted along the Master degree based on the characterization and study of the structural and luminescent properties of silicon rich silicon oxynitride films (SiOxNy:H) deposited at low temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD). The results of this study indicated that silicon rich SiOxNy:H films present luminescence in the visible spectra range with intensity and frequency in correlation with the silicon excess. The results suggested that the silicon excess in the SiOxNy:H matrix is confined in nanometric silicon clusters responsible for the to quantum size effects as well as for radiactive states at the interface of the silicon clusters with the insulating matrix. In the present work in order to evaluate the effect of phase separation, quantum size and interface effects si licon based nanostructured systems presenting total and partial phase separation were produced and their structural and optical properties were characterized in order to correlate them with the silicon rich films ones. In this way multilayers with few nanometers thick a-Si layers with dielectric materials were produced. The mixture of the layers was promoted by ion bombardment in some of these multilayers. The study of these structures permitted the characterization of structural and optical properties of materials with total and partial phase separation with the purpose of comparing them to the silicon-rich silicon oxynitride films characteristics. In order to analyze the interface influence in the optical properties, multilayers systems with two different dielectric materials, silicon oxide and silicon nitride, were fabricated. The dielectric layer thickness was kept constant while the silicon layer was varied in order to study the confinement effect. The characterization was done utilizing UV-Vis optical absorption, infrared absorption (FTIR), Raman spectroscopy, Photoluminescence (PL), X-ray absorption near edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HRTEM) techniques. From the results analysis it was concluded that confinement is essent ial for the existence of luminescent 9 emission although the type of interface also influences the energy and intensity of the emission. The comparative analysis with the multilayers permitted to verify that the silicon-rich silicon oxynitride films present, as deposited, partial phase separation and that the thermal treatments promotes silicon aggregation thus increasing the phase separation.
|
4 |
Estudo das propriedades estruturais e ópticas em materiais nanoestruturados a base de silício. / Study of structural and optical properties in nanostructured silicon based films.Márcia Ribeiro 11 May 2009 (has links)
Esta tese de doutorado tem por objetivo aprofundar as pesquisas realizadas no mestrado, a saber, da caracterização e estudo das propriedades estruturais e ópticas de filmes de oxinitreto de silício (SiOxNy:H) ricos em silício depositados pela técnica de deposição química a vapor assistida por plasma a baixa temperatura (PECVD). Os resultados obtidos no mestrado indicaram que os filmes de SiOxNy:H ricos em silício apresentam emissão luminescente na faixa do visível cuja intensidade e freqüência de emissão estão em correlação com o excesso de silício. Os resultados sugeriram que o excesso de silício na matriz do SiOxNy:H estava disposto na forma de aglomerados de silício de dimensões nanométricas responsáveis por efeitos de tamanho quântico bem como a estados radiativos na interface dos aglomerados com a matriz isolante. Neste trabalho a fim de avaliar o efeito da separação de fases, do tamanho quântico, e da interface, foram produzidos sistemas nanoestruturados a base de silício com total e parcial separação de fases para caracterizar e analisar suas propriedades ópticas e estruturais e compará-las com as dos filmes ricos em silício. Assim foram produzidas multicamadas de a-Si:H de poucos nanômetros de espessura com materiais dielétricos. Em algumas destas multicamadas foi promovida a mistura parcial das camadas por meio de bombardeamento iônico. O estudo nas estruturas de multicamadas permitiu caracterizar e analisar as propriedades estruturais e ópticas de materiais nanoestruturados com total e parcial separação de fases para posteriormente contrastá-los com as características dos filmes de oxinitreto de silício ricos em silício. A fim de analisar a influência da interface nas propriedades ópticas destes sistemas as multicamadas foram fabricadas com dois dielétricos diferentes: o óxido de silício e o ni treto de silício. A espessura das camadas dielétricas foi mantida fixa entanto que a das camadas de silício foi variada para avaliar efeitos de confinamento no silício. A caracterização foi feita utilizando técnicas de absorção óptica no UV-Vis, absorção no infravermelho (FTIR), espectroscopia Raman, fotoluminescência (PL), espectroscopia de absorção de raios X próximos 7 à borda do silício (XANES), e microscopia eletrônica de transmissão de alta resolução (HRTEM). Da análise dos resultados concluiu-se que o confinamento é fundamental para a existência da emissão luminescente embora o tipo de interface influencie a energia e a intensidade da emissão. A análise comparativa com as multicamadas permitiu verificar que os filmes de oxinitreto de silício ricos em silício apresentam, separação parcial de fases já como depositados, os tratamentos térmicos promovem a segregação do silício aumentando conseqüentemente a separação de fases. / The aim of this doctorate thesis is to enhance the knowledge in the research conducted along the Master degree based on the characterization and study of the structural and luminescent properties of silicon rich silicon oxynitride films (SiOxNy:H) deposited at low temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD). The results of this study indicated that silicon rich SiOxNy:H films present luminescence in the visible spectra range with intensity and frequency in correlation with the silicon excess. The results suggested that the silicon excess in the SiOxNy:H matrix is confined in nanometric silicon clusters responsible for the to quantum size effects as well as for radiactive states at the interface of the silicon clusters with the insulating matrix. In the present work in order to evaluate the effect of phase separation, quantum size and interface effects si licon based nanostructured systems presenting total and partial phase separation were produced and their structural and optical properties were characterized in order to correlate them with the silicon rich films ones. In this way multilayers with few nanometers thick a-Si layers with dielectric materials were produced. The mixture of the layers was promoted by ion bombardment in some of these multilayers. The study of these structures permitted the characterization of structural and optical properties of materials with total and partial phase separation with the purpose of comparing them to the silicon-rich silicon oxynitride films characteristics. In order to analyze the interface influence in the optical properties, multilayers systems with two different dielectric materials, silicon oxide and silicon nitride, were fabricated. The dielectric layer thickness was kept constant while the silicon layer was varied in order to study the confinement effect. The characterization was done utilizing UV-Vis optical absorption, infrared absorption (FTIR), Raman spectroscopy, Photoluminescence (PL), X-ray absorption near edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HRTEM) techniques. From the results analysis it was concluded that confinement is essent ial for the existence of luminescent 9 emission although the type of interface also influences the energy and intensity of the emission. The comparative analysis with the multilayers permitted to verify that the silicon-rich silicon oxynitride films present, as deposited, partial phase separation and that the thermal treatments promotes silicon aggregation thus increasing the phase separation.
|
5 |
Fundamental Study on Si Nanowires for Advanced MOSFETs and Light-Emitting Devices / 先端MOSFETおよび発光デバイスを目指したSiナノワイヤの基礎研究Yoshioka, Hironori 23 July 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15612号 / 工博第3301号 / 新制||工||1498(附属図書館) / 28139 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 藤田 静雄, 准教授 山田 啓文 / 学位規則第4条第1項該当
|
6 |
Fundamental Study on Carrier Transport in Si Nanowire MOSFETs with Smooth Nanowire Surfaces / 表面平坦化処理を施したSiナノワイヤMOSFETにおけるキャリヤ輸送の基礎研究Morioka, Naoya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18286号 / 工博第3878号 / 新制||工||1595(附属図書館) / 31144 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 白石 誠司, 准教授 浅野 卓 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
7 |
Optical and electrical properties of compound and transition metal doped compound semiconductor nanowiresRamanathan, Sivakumar 11 February 2009 (has links)
Nanotechnology is the science and engineering of creating functional materials by precise control of matter at nanometer (nm) length scale and exploring novel properties at that scale. It is vital to understand the quantum mechanical phenomena manifested at nanometer scale dimensions since that will enable us to precisely engineer quantum mechanical properties to realize novel device functionalities. This dissertation investigates optical and electronic properties of compound and transition metal doped compound semiconductor nanowires with a view to exploiting them for a wide range of applications in semiconductor electronic and optical devices. In this dissertation work, basic concepts of optical and electronic properties at low dimensional structures will be discussed in chapter 1. Chapter 2 discusses the nanofabrication technique employed to fabricate highly ordered nanowires. Using this method, which is based on electrochemical self-assembly techniques, we can fabricate highly ordered and size controlled nanowires and quantum dots of different materials. In Chapter 3, we report size dependent fluorescence spectroscopy of ZnSe and Mn doped ZnSe nanowires fabricated by the above method. The nanowires exhibit blue shift in the emission spectrum due to quantum confinement effect, which increases the effective bandgap of the semiconductor. We found that the fluorescence spectrum of Mn doped ZnSe nanowires shows high luminescence efficiency, which seems to increase with increasing Mn concentration. These results are highly encouraging for applications in multi spectral displays. Chapter 4 investigates field emission results of highly ordered 50 nm tapered ZnO nanowires that were also fabricated by electrochemical self-assembly. Subsequent to fabrication, the nanowires tips are exposed by chemical etching which renders the tips conical in shape. This tapered shape concentrates the electric field lines at the tip of the wires, and that, in turn, increases the emission current density while lowering the threshold field for the onset of field emission. Measurement of the Fowler-Nordheim tunneling current carried out in partial vacuum indicates that the threshold electric field for field emission in 50-nm diameter ZnO nanowires is 15 V/µm. In this study we identified the key constraint that can increase the threshold field and reduce emission current density. In Chapter 5 we report optical and magnetic measurement of Mn-doped ZnO nanowires. Hysterisis measurements carried out at various temperatures show a ferromagnetic behavior with a Curie temperature of ~ 200 K. We also studied Mn-doping of the ZnO nanowires. The room temperature fluorescence spectroscopy of Mn-doped ZnO nanowires shows a red-shift in the spectra compared to the undoped ZnO nanowires possibly due to strain introduced by the dopants in the nanowires. Finally, in Chapter 6, we report our study of the ensemble averaged transverse spin relaxation time (T2*) in InSb thin films and nanowires using electron spin resonance (ESR) measurement. Unfortunately, the nanowires contained too few spins to produce a detectable signal in our apparatus, but the thin films contained enough spins (> 109/cm2) to produce a measurable ESR signal. We found that the T2* decreases rapidly with increasing temperature between 3.5 K and 20 K, which indicates that spin-dephasing is primarily caused by spin-phonon interactions.
|
Page generated in 0.0891 seconds