• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 107
  • 85
  • 31
  • 27
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 663
  • 183
  • 140
  • 90
  • 52
  • 46
  • 44
  • 44
  • 42
  • 40
  • 40
  • 34
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Optimisation des propriétés électro-optiques de polymères conducteurs pour des dispositifs électrochromes flexibles à signature infrarouge contrôlable

PAGES, Hubert 03 July 2001 (has links) (PDF)
L'objectif de la thèse est de réaliser des dispositifs électrochromes flexibles à signature infrarouge contrôlable dont les propriétés électro-optiques sont conférées par un polymère conducteur. En effet, l'application d'une différence de potentiel entre deux électrodes, dont l'une est le polymère conducteur, doit permettre de moduler la signature infrarouge du dispositif en bande II (3-5 µm) et III (8-12 µm), par modifications réversibles des propriétés optiques du polymère conducteur. <br /><br />La couche mince de polymère conducteur est électrochimiquement déposée sur une membrane microporeuse dorée, réflectrice vis à vis du rayonnement incident. Le polymère conducteur passant d'un état optique transparent à absorbant lors du processus électrochimique de dopage-dédopage engendre alors le contraste. Deux polymères conducteurs ont été étudiés : la polydiphénylamine et le poly(3,4-éthylènedioxythiophène). <br /><br />Le cyclage électrochimique des couches minces de polymères conducteurs met en évidence des effets de gonflement réversibles qui dépendent principalement de la nature du dopant et de l'électrolyte de cyclage. L'analyse de l'impédance d'une microbalance à quartz électrochimique, sur lequel est déposé le polymère, a permis de suivre in situ les changements de masse et de morphologie du film pendant les cycles d'oxydoréduction. Les insertions et les désinsertions des différentes espèces chimiques (ions et molécules de solvant) lors des processus redox ont ainsi pu être quantifiées. L'influence de la nature du dopant, l'effet de la nature de l'électrolyte de cyclage, ainsi que le type de signal électrique appliqué (triangulaire ou carré) ont été étudiés.<br /><br />Des dispositifs électrochromes flexibles à base de membranes poreuses et de polymères conducteurs ont été assemblés. Nous avons pu alors montrer que le contraste réversible obtenu dans le moyen infrarouge était lié aux mouvements d'insertion et de désinsertion des espèces chimiques mis en évidence à l'aide de la microbalance à quartz.
432

Silicon and Quartz Microengineering : Processing and Characterisation

Vallin, Örjan January 2005 (has links)
<p>Microengineering has developed a broad range of production techniques to reduce size, increase throughput, and reduce cost of electrical and mechanical devices. The miniaturisation has also entailed entirely new opportunities.</p><p>In this work, a piezoresistive silicon sensor measuring mechanical deformation has been designed and fabricated with the help of microengineering. Due to the large variety of used processes, this device can serve as a survey of techniques in this field. Four basic process categories are recognised: additive, subtractive, modifying, and joining methods.</p><p>The last category, joining methods, has previously been the least investigated, especially when it comes to compatibility with the other categories. The adaptability of wet chemical etching to established silicon wafer bonding technique has been investigated. Further, phenomena related to oxygen plasma pre-treatment for direct bonding has been investigated by blister bond adhesion tests, X-ray photoelectron spectroscopy, and atomic force microscopy.</p><p>Wafer bonding has been adapted to monocrystalline quartz. For wet chemical pre-treatment, characteristics specific for quartz raise obstacles. Problems with limited allowable annealing temperature, low permeability of water released in the bond at annealing, and electrostatic bonding of particles to the quartz surface, have been studied and overcome. The influence of internal bond interfaces on resonators has been investigated.</p><p>Chemical polishing of quartz by ammonium bifluoride has been experimentally investigated at high temperatures and concentrations. Chemometrical methods were used to search for optimum conditions giving the lowest surface roughness. These extreme conditions showed no extra advantages.</p><p>Adhesion quantification methods for wafer bonding have been comprehensively reviewed, and augmentations have been suggested. The improved techniques’ usefulness for three areas of use has been forecasted: general understanding, bonding scheme optimisation, and quality control. It was shown that the quality of measurements of all commonly used methods could be dramatically improved by small means.</p>
433

Photochemical Ligation Techniques for Carbohydrate Biosensors and Protein Interaction Studies

Norberg, Oscar January 2012 (has links)
This thesis concerns the development of surface ligation techniques for the preparation of carbohydrate biosensors. Several methodologies were developed based on efficient photochemical insertion reactions which quickly functionalize polymeric materials, with either carbohydrates or functional groups such as alkynes or alkenes. The alkyne/alkene surfaces were then treated with carbohydrate azides or thiols and reacted under chemoselective Cu-catalyzed azide-alkyne cycloaddition (CuAAC) or photo-radical thiol-ene/yne click chemistry, thus creating a range of carbohydrate biosensor surfaces under ambient conditions. The methodologies were evaluated by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) flow through instrumentations with recurring injections of a range of lectins, allowing for real-time analysis of the surface interactions. The developed methods were proven robust and versatile, and the generated carbohydrate biosensors showed high specificities and good capacities for lectin binding.  The methods were then used to investigate how varying the glycan linker length and/or a sulfur-linkage affect the subsequent protein binding. The survey was further explored by investigating the impact of sulfur in glycosidic linkages on protein binding, through competition assays with various O/S-linked disaccharides in solution interactions with lectins. / QC 20120309
434

Silicon and Quartz Microengineering : Processing and Characterisation

Vallin, Örjan January 2005 (has links)
Microengineering has developed a broad range of production techniques to reduce size, increase throughput, and reduce cost of electrical and mechanical devices. The miniaturisation has also entailed entirely new opportunities. In this work, a piezoresistive silicon sensor measuring mechanical deformation has been designed and fabricated with the help of microengineering. Due to the large variety of used processes, this device can serve as a survey of techniques in this field. Four basic process categories are recognised: additive, subtractive, modifying, and joining methods. The last category, joining methods, has previously been the least investigated, especially when it comes to compatibility with the other categories. The adaptability of wet chemical etching to established silicon wafer bonding technique has been investigated. Further, phenomena related to oxygen plasma pre-treatment for direct bonding has been investigated by blister bond adhesion tests, X-ray photoelectron spectroscopy, and atomic force microscopy. Wafer bonding has been adapted to monocrystalline quartz. For wet chemical pre-treatment, characteristics specific for quartz raise obstacles. Problems with limited allowable annealing temperature, low permeability of water released in the bond at annealing, and electrostatic bonding of particles to the quartz surface, have been studied and overcome. The influence of internal bond interfaces on resonators has been investigated. Chemical polishing of quartz by ammonium bifluoride has been experimentally investigated at high temperatures and concentrations. Chemometrical methods were used to search for optimum conditions giving the lowest surface roughness. These extreme conditions showed no extra advantages. Adhesion quantification methods for wafer bonding have been comprehensively reviewed, and augmentations have been suggested. The improved techniques’ usefulness for three areas of use has been forecasted: general understanding, bonding scheme optimisation, and quality control. It was shown that the quality of measurements of all commonly used methods could be dramatically improved by small means.
435

Comment améliorer la dérive des résonateurs à quartz pour applications spatiales ?

Delmas, Bruno 09 November 2009 (has links) (PDF)
Depuis près d'un siècle, les résonateurs à quartz à ondes de volume sont utilisés pour stabiliser les oscillateurs électriques. Cette longévité est due aux propriétés exceptionnelles du quartz et aux progrès constants de la technique. Pour les applications spatiales, il n'est généralement pas possible d'intervenir sur le composant. La dérive en fréquence doit alors être réduite et contrôlée sur des dizaines d'années. Cette variation systématique de la fréquence de résonance au cours du temps est due à l'évolution de plusieurs phénomènes physiques dont nous avons fait la synthèse et une analyse quantitative. Le premier de nos deux axes d'études porte sur l'étude des contraintes mécaniques dans la lame de quartz. Un travail bibliographique nous a permis d'étudier les spécificités de différentes formes de résonateur pour comprendre l'effet des contraintes mécaniques et les moyens de limiter la variation de fréquence induite. Les outils de modélisation actuels nous ont aidés à mettre au point une géométrie apportant une nette réduction de l'effet force-fréquence, confirmée par les mesures des premiers prototypes. L'autre axe d'étude est expérimental et prote sur un procédé essentiel communément appelé "pré-vieillissement". Les nombreuses contraintes de cette étude, telles que le temps, nous ont imposées une organisation méthodique de l'expérimentation. Ainsi, les plans factoriels fractionnaires nous ont permis de limiter les moyens techniques tout en obtenant les effets de chaque paramètre définissant le pré-vieillissement. Les résultats convergent vers la même conclusion que celle faite lors de l'étude quantitative des phénomènes physiques produisant le vieillissement.
436

Characterization of Substituted Polynorbornenes for Advanced Lithography

Hoskins, Trevor P. J., II 23 September 2005 (has links)
A fundamental characterization of hexafluoroalcohol substituted polynorbornene (HFAPNB) was completed to improve the final photoresist formulation using these materials. In this work, it was found that the dissolution behavior of these materials was controlled by the ability of polymer chains to form hydrogen bonds. This ability to form interchain hydrogen bonds was affected by stereochemical changes in the polynorbornene backbone as molecular weights increase. These observed changes in backbone polynorbornene stereochemistry were accurately modeled using the "helix-kink" theory, first described by Ahmed and Ludovice. It was found that several material properties altered the interchain hydrogen bonding within these materials, such as the polydispersity, polymerization catalyst, and the polymer film thickness. However, none of these material properties altered the unusual dissolution behavior observed in these materials. To improve the potential formulation of these materials, the interactions between HFAPNB and resist additives were studied. For all tested photoacid generators, it was found that some interchain hydrogen bonding occurred between resist additive molecules and HFA side groups, which retarded the dissolution rate in the formulated material. In particular, one can create a simple resist using unprotected HFAPNB polymer with an iodonium photoacid generator. Finally, a series of norbornene oligomers were evaluated as potential dissolution inhibitors for HFAPNB. It was found that the dissolution rate of HFAPNB can be completely inhibited with dissolution inhibitors at a loading of 15%.
437

Design and Characterization of Materials and Processes for Area Selective Atomic Layer Deposition

Sinha, Ashwini K. 27 October 2006 (has links)
Area selective atomic layer deposition (ASALD) is demonstrated to be a promising route to perform direct patterned deposition. In particular, methods to modify (or mask) the surface and process parameters to perform selective deposition of titanium dioxide have been developed and investigated in detail. Results indicated that self assembled monolayer based masking methodology posses significant limitations due to challenges associated with obtaining defect free monolayer and absence of traditional patterning techniques. On the other hand, polymer films based masking methodology offer a better alternative to perform ASALD. A number of factors that must be considered in designing a successful ASALD process based on polymer films were identified. These include: reactivity of polymer with ALD precursor, diffusion of ALD precursors through polymer mask and remnant precursor content in the polymer film during ALD cycling. Investigations suggested that ALD nucleation can be successfully blocked on polymer films that do not contain direct OH sites in their backbone. It was observed that sorption of water in the polymer film does not pose a serious limitation however; metal precursor diffusion through the polymer mask was identified as a critical parameter in determining the minimum required masking layer thickness for a successful ASALD process. In addition, a novel ASALD-based top surface imaging (TSI) technique has been developed. The ASALD-TSI process has demonstrated sharp contrast (etch barrier deposition vs exposure dose) and therefore offers the potential to overcome many of the challenges experienced with conventional TSI schemes.
438

Lead Determination By Flame Atomic Absorption Spectrometry Using A Slotted Quartz Tube Atom Trap And Metal Coatings

Demirtas, Ilknur 01 July 2009 (has links) (PDF)
Flame Atomic Absorption Spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity / because it is a simple and economical technique for determination of metals. In recent years atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of mg/L, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of these atom traps, it is applied for determination of volatile elements / it is economical, commercially available and easy to use. In this study, a sensitive analytical method has been developed for the determination of lead with the help of SQT. Regarding the angle between the two slots of SQT, 120&deg / and 180&deg / configurations were used and the results were compared. There were three modes of SQT used. The first application was for providing longer residence time of analyte atoms in the measurement zone / 3 fold sensitivity enhancement was observed. The second mode was the usage of SQT for preconcentration of lead atoms. In the presence of a lean air-acetylene flame, analyte atoms were trapped in the inner surface of SQT for a few minutes. Then, by the help of a small volume (10-50 &amp / #956 / L) of Methyl isobutyl ketone (MIBK), analyte atoms were revolatilized and a rapid atomization took place. Using this mode, a sensitivity enhancement of 574 was obtained at a rather low (3.9 mL/min) suction rate / 1320 fold improvement was reached at higher sample suction rate (7.4 mL/min) for 5.0 min collection. The last mode involves coating of the inner surface of SQT with several kinds of transition metals. The best sensitivity enhancement, 1650 fold, was obtained by the Ta coated SQT. In addition, effects of some elements and anions on Pb signal in Tacoated-SQT-AT-FAAS were examined. Final step consists of surface analysis / chemical nature of Pb trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy.
439

Determination Of Cadmium Using Slotted Quartz Tube Atom Trap Atomic Absorption Spectrometry And Metal Coatings

Ozcan Gurbetoglu, Pelin Gulistan 01 July 2010 (has links) (PDF)
ABSTRACT DETERMINATION OF CADMIUM USING SLOTTED QUARTZ TUBE ATOM TRAP ATOMIC ABSORPTION SPECTROMETRY AND METAL COATINGS &Ouml / zcan Gurbetoglu, G. Pelin M.S., Department of Chemistry Supervisor: Prof. Dr. O. Yavuz Ataman July 2010, 76 pages Flame atomic absorption spectroscopy (FAAS) is a common technique for detecting metals and metalloids in environmental, biological and metallurgical samples. Although it is a rather old technique, it is still very reliable, simple to use and inexpensive. The technique can be used to determine the concentration of over 70 different metals in a solution. However, it has detection limits at mg/L levels. Some atom trapping methods have been developed to reach the detection limits of ng/mL levels. Slotted quartz tube (SQT) is one of these atom trapping methods. It is an important technique, since it is easy to use, applicable in all laboratories, commercially available and economical. This thesis consists of development of a sensitive method for cadmium with the help of SQT atom trap. In this study, it was used for two different purposes. One was for keeping the analyte atoms more in the light path / in other words, for increasing the residence times of analyte atoms in the measurement zone. This first application was provided a 2.9 times enhancement with respect to conventional FAAS. Second application was for trapping the analyte on the surface of the SQT, in other words, for performing on-line preconcentration of cadmium in SQT. In the presence of a lean flame, analyte samples were trapped and collected for a few minutes at a low suction rate. After finishing the collection period, analyte atoms were revolatilized with the help of a small volume of (10-50 &micro / L) methyl isobutyl ketone (MIBK) and a rapid atomization occurred. This introduction also altered the flame composition momentarily and analyte atoms were released from the surface of the SQT. Application of this method enhanced the sensitivity 2065 times with respect to conventional FAAS. Another approach to this type of atom trapping has been investigated also in this study, which was coating of SQT with some metals having low volatility. Therefore, some transition metals were coated to the surface of SQT and among them zirconium was selected as the best coating material as having the most sensitivity enhancement factor. That is why, rest of the study was performed with the Zr coated SQT. The enhancement was 3368 as compared with FAAS. Cd determination with this method provides LOD value of 8 pg/mL and Co value of 19 pg/mL. In order to see the effect of some other type of elements or ions on determination of cadmium, interference study was done.
440

Tellurium Determination By Flame Atomic Absorption Spectrometry Using A Slotted Quartz Tube Atom Trap And Metal Coatings

Osmanbasoglu, Mahmut 01 February 2011 (has links) (PDF)
Flame Atomic Absorption Spectroscopy (FAAS) has lover sensitivity than similar analytical methods, however it has an important place for analysis due to its easy application and economic practicability especially in metal determinations. In order to increase the sensitivity of FAAS from mg/L level to ng/L level, various atom trap systems have been used. One of these atom traps, Slotted Quartz Tube (SQT), which is easy, economical and useful for volatile element determination, is used in this study as a sensitive analytical method for determination of tellurium. In the study, determination of Te by SQT is handled in three different modules. First, only with SQT itself, longer residence time for Te atoms in the measurement zone is provided and consequently 3.2 fold sensitivity enhancement is obtained both for Te (VI) and Te (IV). In the second module, SQT is used for concentration of tellurium species in a lean flame by sending the analyte into SQT for a definite time and trapping them on the inner surface of the SQT. After trapping the analyte, in order to determine the Te concentration, a small volume (10-50 &micro / L) of organic solvent such as methyl ethyl ketone (MEK) is introduced to the flame for revolatilization and a rapid atomization of Te on the surface is provided. In this trapping method, for 5 minutes collection with a 6 mL/min suction rate, 143 fold enhancement for Te (VI) and 142 fold enhancement for Te (IV) were obtained. In the third module, different from the second one, the inner surface of the SQT is coated with different metals for increasing the amount of Te trapped on the surface and the best enhancement for tellurium is obtained with Tantalum-coated SQT with 252 fold enhancement for Te (VI) and 246 fold enhancements for Te (IV). All improvements are calculated according to the signals obtained in FAAS method. Separate calibration plots were used for Te (IV) and Te (VI).

Page generated in 0.0234 seconds