• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust MEWMA-type Control Charts for Monitoring the Covariance Matrix of Multivariate Processes

Xiao, Pei 06 March 2013 (has links)
In multivariate statistical process control it is generally assumed that the process variables follow a multivariate normal distribution with mean vector " and covariance matrix •, but this is rarely satisfied in practice. Some robust control charts have been developed to monitor the mean and variance of univariate processes, or the mean vector " of multivariate processes, but the development of robust multivariate charts for monitoring • has not been adequately addressed. The control charts that are most affected by departures from normality are actually the charts for • not the charts for ". In this article, the robust design of several MEWMA-type control charts for monitoring • is investigated. In particular, the robustness and efficiency of different MEWMA-type control charts are compared for the in-control and out-of-control cases over a variety of multivariate distributions. Additionally, the total extra quadratic loss is proposed to evaluate the overall performance of control charts for multivariate processes. / Ph. D.
2

Modelování systémů bonus - malus / Modelling Bonus - Malus Systems

Stroukalová, Marika January 2013 (has links)
Title: Modelling Bonus - Malus Systems Author: Marika Stroukalová Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Lucie Mazurová, Ph.D., KPMS MFF UK Abstract: In this thesis we deal with bonus-malus tariff systems commonly used to adjust the a priori set premiums according to the individual claims during mo- tor third party liability insurance. The main aim of this thesis is to describe the standard model based on the Markov chain. For each bonus-malus class we also determine the relative premium ("relativity"). Another objective of this thesis is to find optimal values for the relativities taking into account the a priori set premiums. We apply the theoretical model based on the stationary distribu- tion of bonus-malus classes on real-world data and a particular real bonus-malus system used in the Czech Republic. The empirical part of this thesis compares the optimal and the real relativities and assesses the suitability of the chosen theoretical model for the particular bonus-malus system. Keywords: bonus-malus system, a priori segmentation, stationary distribution, relativity, quadratic loss function 1
3

Modelling dependence in actuarial science, with emphasis on credibility theory and copulas

Purcaru, Oana 19 August 2005 (has links)
One basic problem in statistical sciences is to understand the relationships among multivariate outcomes. Although it remains an important tool and is widely applicable, the regression analysis is limited by the basic setup that requires to identify one dimension of the outcomes as the primary measure of interest (the "dependent" variable) and other dimensions as supporting this variable (the "explanatory" variables). There are situations where this relationship is not of primary interest. For example, in actuarial sciences, one might be interested to see the dependence between annual claim numbers of a policyholder and its impact on the premium or the dependence between the claim amounts and the expenses related to them. In such cases the normality hypothesis fails, thus Pearson's correlation or concepts based on linearity are no longer the best ones to be used. Therefore, in order to quantify the dependence between non-normal outcomes one needs different statistical tools, such as, for example, the dependence concepts and the copulas. This thesis is devoted to modelling dependence with applications in actuarial sciences and is divided in two parts: the first one concerns dependence in frequency credibility models and the second one dependence between continuous outcomes. In each part of the thesis we resort to different tools, the stochastic orderings (which arise from the dependence concepts), and copulas, respectively. During the last decade of the 20th century, the world of insurance was confronted with important developments of the a posteriori tarification, especially in the field of credibility. This was dued to the easing of insurance markets in the European Union, which gave rise to an advanced segmentation. The first important contribution is due to Dionne & Vanasse (1989), who proposed a credibility model which integrates a priori and a posteriori information on an individual basis. These authors introduced a regression component in the Poisson counting model in order to use all available information in the estimation of accident frequency. The unexplained heterogeneity was then modeled by the introduction of a latent variable representing the influence of hidden policy characteristics. The vast majority of the papers appeared in the actuarial literature considered time-independent (or static) heterogeneous models. Noticeable exceptions include the pioneering papers by Gerber & Jones (1975), Sundt (1988) and Pinquet, Guillén & Bolancé (2001, 2003). The allowance for an unknown underlying random parameter that develops over time is justified since unobservable factors influencing the driving abilities are not constant. One might consider either shocks (induced by events like divorces or nervous breakdown, for instance) or continuous modifications (e.g. due to learning effect). In the first part we study the recently introduced models in the frequency credibility theory, which can be seen as models of time series for count data, adapted to actuarial problems. More precisely we will examine the kind of dependence induced among annual claim numbers by the introduction of random effects taking unexplained heterogeneity, when these random effects are static and time-dependent. We will also make precise the effect of reporting claims on the a posteriori distribution of the random effect. This will be done by establishing some stochastic monotonicity property of the a posteriori distribution with respect to the claims history. We end this part by considering different models for the random effects and computing the a posteriori corrections of the premiums on basis of a real data set from a Spanish insurance company. Whereas dependence concepts are very useful to describe the relationship between multivariate outcomes, in practice (think for instance to the computation of reinsurance premiums) one need some statistical tool easy to implement, which incorporates the structure of the data. Such tool is the copula, which allows the construction of multivariate distributions for given marginals. Because copulas characterize the dependence structure of random vectors once the effect of the marginals has been factored out, identifying and fitting a copula to data is not an easy task. In practice, it is often preferable to restrict the search of an appropriate copula to some reasonable family, like the archimedean one. Then, it is extremely useful to have simple graphical procedures to select the best fitting model among some competing alternatives for the data at hand. In the second part of the thesis we propose a new nonparametric estimator for the generator, that takes into account the particularity of the data, namely censoring and truncation. This nonparametric estimation then serves as a benchmark to select an appropriate parametric archimedean copula. This selection procedure will be illustrated on a real data set.
4

動態規劃數值解 :退休後資產配置 / Dynamic programming numerical solution: post retirement asset allocation

蔡明諺, Tsai, Ming Yen Unknown Date (has links)
動態規劃的問題並不一定都存在封閉解(closed form solution),即使存在,其過程往往也相當繁雜。本研究擬以 Gerrard & Haberman (2004) 的模型為基礎,並使用逼近動態規劃理論解的數值方法來求解,此方法參考自黃迪揚(2009),其研究探討在有無封閉解的動態規劃下,使用此數值方法求解可以得到 逼近解。本篇嘗試延伸其方法,針對不同類型的限制,做更多不同的變化。Gerrard & Haberman (2004)推導出退休後投資於風險性資產與無風險性資產之最適投資策略封閉解, 本研究欲將模型投資之兩資產衍生至三資產,分別投資在高風險資產、中風險資產與無風險資產,實際市場狀況下禁止買空賣空的情況與風險趨避程度限制資產投資比例所造成的影響。並探討兩資產與三資產下的投資結果,並加入不同的目標函數:使用控制變異數的限制式來降低破產機率、控制帳戶差異部位讓投資更具效率性。雖然加入這些限制式會導致目標函 數過於複雜,但是用此數值方法還是可以得出逼近解。 / Dynamic Programming’s solution is not always a closed form. If it do exist, the solution of progress may be too complicated. Our research is based on the investing model in Gerrard & Haberman (2004), using the numerical solution by Huang (2009) to solve the dynamic programming problem. In his research, he found out that whether dynamic programming problem has the closed form, using the numerical solution to solve the problems, which could get similar result. So in our research, we try to use this solution to solve more complicate problems. Gerrard & Haberman (2004) derived the closed form solution of optimal investing strategy in post retirement investment plan, investing in risky asset and riskless asset. In this research we try to invest in three assets, investing in high risk asset, middle risk asset and riskless asset. Forbidden short buying and short selling, how risk attitude affect investment behavior in risky asset and riskless asset. We also observe the numerical result of 2 asset and 3 asset, using different objective functions : using variance control to avoid ruin risk, consideration the distance between objective account and actual account to improve investment effective. Although using these restricts may increase the complication of objective functions, but we can use this numerical solution to get the approximating solution.
5

Contributions to quality improvement methodologies and computer experiments

Tan, Matthias H. Y. 16 September 2013 (has links)
This dissertation presents novel methodologies for five problem areas in modern quality improvement and computer experiments, i.e., selective assembly, robust design with computer experiments, multivariate quality control, model selection for split plot experiments, and construction of minimax designs. Selective assembly has traditionally been used to achieve tight specifications on the clearance of two mating parts. Chapter 1 proposes generalizations of the selective assembly method to assemblies with any number of components and any assembly response function, called generalized selective assembly (GSA). Two variants of GSA are considered: direct selective assembly (DSA) and fixed bin selective assembly (FBSA). In DSA and FBSA, the problem of matching a batch of N components of each type to give N assemblies that minimize quality cost is formulated as axial multi-index assignment and transportation problems respectively. Realistic examples are given to show that GSA can significantly improve the quality of assemblies. Chapter 2 proposes methods for robust design optimization with time consuming computer simulations. Gaussian process models are widely employed for modeling responses as a function of control and noise factors in computer experiments. In these experiments, robust design optimization is often based on average quadratic loss computed as if the posterior mean were the true response function, which can give misleading results. We propose optimization criteria derived by taking expectation of the average quadratic loss with respect to the posterior predictive process, and methods based on the Lugannani-Rice saddlepoint approximation for constructing accurate credible intervals for the average loss. These quantities allow response surface uncertainty to be taken into account in the optimization process. Chapter 3 proposes a Bayesian method for identifying mean shifts in multivariate normally distributed quality characteristics. Multivariate quality characteristics are often monitored using a few summary statistics. However, to determine the causes of an out-of-control signal, information about which means shifted and the directions of the shifts is often needed. We propose a Bayesian approach that gives this information. For each mean, an indicator variable that indicates whether the mean shifted upwards, shifted downwards, or remained unchanged is introduced. Default prior distributions are proposed. Mean shift identification is based on the modes of the posterior distributions of the indicators, which are determined via Gibbs sampling. Chapter 4 proposes a Bayesian method for model selection in fractionated split plot experiments. We employ a Bayesian hierarchical model that takes into account the split plot error structure. Expressions for computing the posterior model probability and other important posterior quantities that require evaluation of at most two uni-dimensional integrals are derived. A novel algorithm called combined global and local search is proposed to find models with high posterior probabilities and to estimate posterior model probabilities. The proposed method is illustrated with the analysis of three real robust design experiments. Simulation studies demonstrate that the method has good performance. The problem of choosing a design that is representative of a finite candidate set is an important problem in computer experiments. The minimax criterion measures the degree of representativeness because it is the maximum distance of a candidate point to the design. Chapter 5 proposes algorithms for finding minimax designs for finite design regions. We establish the relationship between minimax designs and the classical set covering location problem in operations research, which is a binary linear program. We prove that the set of minimax distances is the set of discontinuities of the function that maps the covering radius to the optimal objective function value, and optimal solutions at the discontinuities are minimax designs. These results are employed to design efficient procedures for finding globally optimal minimax and near-minimax designs.
6

Estimation d'une matrice d'échelle. / Scale matrix estimation

Haddouche, Mohamed Anis 31 October 2019 (has links)
Beaucoup de résultats sur l’estimation d’une matrice d’échelle en analyse multidimensionnelle sont obtenus sous l’hypothèse de normalité (condition sous laquelle il s’agit de la matrice de covariance). Or il s’avère que, dans des domaines tels que la gestion de portefeuille en finance, cette hypothèse n’est pas très appropriée. Dans ce cas, la famille des distributions à symétrie elliptique, qui contient la distribution gaussienne, est une alternative intéressante. Nous considérons dans cette thèse le problème d’estimation de la matrice d’échelle Σ du modèle additif Yp_m = M + E, d’un point de vue de la théorie de la décision. Ici, p représente le nombre de variables, m le nombre d’observations, M une matrice de paramètres inconnus de rang q < p et E un bruit aléatoire de distribution à symétrie elliptique, avec une matrice de covariance proportionnelle à Im x Σ. Ce problème d’estimation est abordé sous la représentation canonique de ce modèle où la matrice d’observation Y est décomposée en deux matrices, à savoir, Zq x p qui résume l’information contenue dans M et une matrice Un x p, où n = m - q, qui résume l’information suffisante pour l’estimation de Σ. Comme les estimateurs naturels de la forme Σa = a S (où S = UT U et a est une constante positive) ne sont pas de bons estimateurs lorsque le nombre de variables p et le rapport p=n sont grands, nous proposons des estimateurs alternatifs de la forme ^Σa;G = a(S + S S+G(Z; S)) où S+ est l’inverse de Moore-Penrose de S (qui coïncide avec l’inverse S-1 lorsque S est inversible). Nous fournissons des conditions sur la matrice de correction SS+G(Z; S) telles que ^Σa;G améliore^Σa sous le coût quadratique L(Σ; ^Σ) = tr(^ΣΣ‾1 - Ip)² et sous une modification de ce dernier, à savoir le coût basé sur les données LS (Σ; ^Σ) = tr(S+Σ(^ΣΣ‾1 - Ip)²). Nous adoptons une approche unifiée des deux cas où S est inversible et S est non inversible. À cette fin, une nouvelle identité de type Stein-Haff et un nouveau calcul sur la décomposition en valeurs propres de S sont développés. Notre théorie est illustrée par une grande classe d’estimateurs orthogonalement invariants et par un ensemble de simulations. / Numerous results on the estimation of a scale matrix in multivariate analysis are obtained under Gaussian assumption (condition under which it is the covariance matrix). However in such areas as Portfolio management in finance, this assumption is not well adapted. Thus, the family of elliptical symmetric distribution, which contains the Gaussian distribution, is an interesting alternative. In this thesis, we consider the problem of estimating the scale matrix _ of the additif model Yp_m = M + E, under theoretical decision point of view. Here, p is the number of variables, m is the number of observations, M is a matrix of unknown parameters with rank q < p and E is a random noise, whose distribution is elliptically symmetric with covariance matrix proportional to Im x Σ. It is more convenient to deal with the canonical forme of this model where Y is decomposed in two matrices, namely, Zq_p which summarizes the information contained in M, and Un_p, where n = m - q which summarizes the information sufficient to estimate Σ. As the natural estimators of the form ^Σ a = a S (where S = UT U and a is a positive constant) perform poorly when the dimension of variables p and the ratio p=n are large, we propose estimators of the form ^Σa;G = a(S + S S+G(Z; S)) where S+ is the Moore-Penrose inverse of S (which coincides with S-1 when S is invertible). We provide conditions on the correction matrix SS+G(Z; S) such that ^Σa;G improves over ^Σa under the quadratic loss L(Σ; ^Σ) = tr(^ΣΣ‾1 - Ip)² and under the data based loss LS (Σ; ^Σ) = tr(S+Σ(^ΣΣ‾1 - Ip)²).. We adopt a unified approach of the two cases where S is invertible and S is non-invertible. To this end, a new Stein-Haff type identity and calculus on eigenstructure for S are developed. Our theory is illustrated with the large class of orthogonally invariant estimators and with simulations.
7

Fonctions de perte en actuariat

Craciun, Geanina January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
8

Fonctions de perte en actuariat

Craciun, Geanina January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0605 seconds