• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthode directe de mesure du bruit de fond des quadripoles

Borreil, Joël 25 February 1981 (has links) (PDF)
Indisponible
2

Contribution à l'étude de l'endommagement de matériaux composites par estimation des termes sources et des diffusivités thermiques / Contribution to the study of damage to composite materials by estimation of source terms and thermal diffusivities

Castillo, Anthony 12 December 2017 (has links)
Ce travail porte sur la détection de l’endommagement de matériaux composites. Une première partie concerne l’élaboration de méthodes permettant d’estimer les termes sources de chaleur d’un matériau sollicité mécaniquement. Lors de ce processus, un ensemble de défauts mécaniques mènent à des productions de chaleur. La détection des sources peut permettre la détection de ces défauts. Deux principales méthodes sont présentées : une méthode dite « directe » basée sur une discrétisation du champ de température mesuré et une méthode « itérative » basée sur la méthode du gradient conjugué. A ces méthodes sont couplées des techniques de filtrages des données comme la SVD. Les équations sont résolues par différences finies sous leur forme linéaire. Des modifications sont apportées à l’algorithme itératif pour améliorer sa convergence ainsi que les résultats. Les problématiques envisagées font partie des problèmes inverses en thermique. L’objectif de la première partie est de trouver un lien entre l’apparition de macro-fissure et la localisation de termes sources de chaleur au sein d’un matériau composite. La seconde partie consiste à élaborer des méthodes d’estimation des diffusivités thermiques directionnelles. Les méthodes reposent sur une modélisation du transfert de chaleur à l’aide des quadripôles thermiques. Les estimations de paramètres sont réalisées sur des zones ciblées à risque sur un matériau déjà endommagé. Le but est de faire le lien entre un endommagement mécanique connu diffus et une dégradation des propriétés thermiques. Ce manuscrit est présenté en deux parties : une partie de validation des méthodes. Une partie expérimentale où sont analysés les composites. / This work deals with the damage detection of composite materials. These materials are used in the aeronautics industry. The first part concerns the development of methods to estimate the heat sources terms of a stressed material. During this process, a set of mechanical defects leads to heat productions. The sources detection can conduct to the detection of these defects. Two main methods are presented: a "direct" method based on a discretization of the measured temperature field and an "iterative" method based on the conjugate gradient method. These methods are coupled with data filtering techniques such as SVD. In order to optimize computation time, equations are solved by finite differences in their linear form. Modifications are also made for the iterative algorithm to improve its convergence as well as the results of the estimation. These problems are considered as thermal inverse problems. The main objective of the first part is to find an experimental link between the appearance of a macro fissure and the localization of a heat source term within a composite material. The second part consists in the elaboration of methods for estimating thermal directional diffusivities. The methods are based on a modeling of heat transfer using thermal quadrupoles. Parameter estimations are made on targeted "risked" areas on a material, which is already damaged but not under stress. The aim is to link a known mechanical damage, which is called "diffuse" to thermal properties degradation in the main directions. This manuscript is presented in two parts: a validation part of the methods, and an experimental part in which composites are analyzed.
3

Development of Methods to Identify Thermophysical Properties of Complex Media / Développement de méthodes pour la caractérisation de propriétés thermophysiques de matériaux à structure complexe

El Rassy, Elissa 24 October 2019 (has links)
Les matériaux à structures complexes (anisotropes, multicouches et hétérogènes comme poreux) sont de plus en plus utilisés dans de nombreuses applications (ex. automobile,aéronautique, industrie chimique, génie civil et biomédical), notamment en raison de leur amélioration des propriétés mécaniques et physiques. L’identification des propriétés thermophysiques de ces matériaux devient un enjeu incontournable dans plusieurs applications afin de prédire correctement l’évolution de la température au sein de ces structures et d’assurer le contrôle et la modélisation des transferts de chaleur au cours des processus. Dans ce contexte,l’identification des propriétés thermophysiques de tels matériaux, suscitent depuis de nombreuses années une préoccupation importante et croissante. La principale caractéristique de cette thèse concerne la mise en œuvre d’une méthode d’identification directe et simultanée des diffusivités thermiques de matériaux monocouches ou multicouches à l’aide d’un modèle3D transitoire analytique et d’une expérience unique et non intrusive. La méthode proposée est d’abord validée sur un matériau monocouche opaque et isotrope, puis appliquée et vérifiée sur un matériau orthotrope. La méthode d’identification est basée sur l’expérience bien connue de la méthode flash, qui utilise l’évolution de la température sur la face avant ou arrière de l’échantillon, enregistrée via une caméra infrarouge, pour identifier les paramètres inconnus. Compte tenu de la complexité et de la non-linéarité du problème inverse, un algorithme d’optimisation hybride couplant un algorithme stochastique (Optimisation par essaims particulaires) et un déterministe (de type gradient), a été choisi. L’estimation repose sur la minimisation de l’écart entre les mesures et la réponse d’un modèle semi-analytique inspiré de l’approche des quadripôles thermiques qui prédit l’évolution de la température sur la face avant ou la face arrière. L’excitation thermique, générée par un laser CO2, est représentée par un flux de chaleur localisé imposé qui peut être de type Dirac ou créneau. Les estimations sont comparées aux valeurs trouvées dans la littérature et aux résultats obtenus en utilisant d’autres méthodes bien établies. Enfin, quelques améliorations de la méthode sont étudiées, en termes de temps de calcul et de précision, avec une optimisation des conditions expérimentales241RÉSUMÉ(durée et intensité des créneaux, face de mesure. . . ). La méthode est ensuite généralisée aux matériaux multicouches, puis appliquée expérimentalement à un matériau bicouche. Cette stratégie, qui peut être considérée comme une tâche difficile, est motivée par l’impossibilité,dans certains cas, de séparer les 2 couches, en particulier pour les revêtements déposés sur des substrats, qui sera la dernière application investiguée dans ce travail. Une analyse de sensibilité est souvent effectuée afin de tester la faisabilité de l’estimation et de la comparaison,pour les matériaux à deux couches et multicouches, de plusieurs configurations possibles en termes de faces d’excitation/de mesures. La pré-évaluation des méthodes d’identification et les études paramétriques sont effectuées à l’aide de données synthétiques bruitées et obtenues à l’aide du modèle ou d’un code numérique d’éléments finis (pseudo-expérience) afin de vérifier la faisabilité et la robustesse des approches. L’une des caractéristiques les plus distinctes de cette approche est que l’estimation peut être réalisée, et avec succès, sans aucune connaissance préalable de la forme ou de l’intensité de l’excitation. En effet, outre l’estimation simultanée des diffusivités thermiques, la méthode peut prédire la quantité de chaleur absorbée parle matériau ainsi que la distribution spatiale de l’excitation thermique. / Advanced materials with complex structures (anisotropic, multilayers and heterogeneous like porous) are increasingly used in many applications, (e.g. automotive, aeronautics, chemical industry, civil and biomedical engineering) due to their advantages, in terms of mechanical and physical properties enhancements. Estimating thermophysical properties of such materials becomes a crucial issue in several applications in order to correctly predict temperature evolution inside these structures and to ensure the control and the modelling of heat transfers through the processes. In this context, the identification of such materials thermophysical properties, has taken from many years, a significant and increasing concern. The main feature of this thesis relies on the devolvement of a direct and simultaneous identification method of the thermal diffusivities of monolayer or multilayer materials using an analytical 3D transient model and a unique and non-intrusive experiment. The proposed method is firstly validated on an isotropic opaque monolayermaterial, then applied and verified on an orthotropic one. The identificationmethod is based on the well-known flash-method experiment whose temperature evolution on the front or rear face on the sample, recorded via an IR camera, is used to identify the unknown parameters. Considering the complexity, and the non-linearity of the inverse problem, a hybrid optimization algorithm combining a stochastic algorithm (Particles Swarm Optimization) and a deterministic one (gradient based), has been chosen. This minimization procedure is applied to fit the observation to the output of a pseudo- analytical model inspired from the thermal quadrupoles approach that predicts the temperature evolution on the front or rear face. The thermal excitation, generated by a CO2 laser, is mimicked by an imposed localized heat flux that may be of Dirac or pulse type. The estimations are compared with values from literature and results obtain from well-established methods. Finally, some improvement of the method are investigated, in terms of time consumption and accuracy, with an optimization of the experiment design (pulse time and intensity, measurement face). The method is then generalised to multi-layer materials, then applied experimentally to a two-layer material. This strategy, which can be considered as a challenging task, is motivated by the impossibility, in some cases, to separate the 2 layers, especially for coatings deposited on substrates which is the last application investigated in this work. A sensitivity analysis is often conducted in order to test the feasibility of the estimation and compare, for two-layer and multilayers materials, several possible configurations in terms of excitation/measurements faces. Pre-evaluation of the overall identification methods and parametric studies are performed using synthetic noisy data generated using the model or a numerical finite element code(pseudo-experiment) to verify the approaches feasibility and robustness. One of the most distinctive features of our approach is that the estimation may be successfully achieved without any a priori knowledge about the shape or the intensity of the excitation. Indeed, besides the simultaneous estimation of the thermal diffusivities, the method predicts the total amount of heat absorbed by the material as well as the space shape of the thermal excitation.
4

Métrologie de la Commutation de Puissance Rapide. Contribution à la Caractérisation et à la Recherche d'un Modèle d'I.G.B.T..

Lembeye, Yves 16 January 1997 (has links) (PDF)
Aujourd'hui l'outil le plus utilisé par les spécialistes d'électronique de puissance est l'oscilloscope numérique. Tant que ces appareils sont utilisés pour vérifier le fonctionnement de circuits, leur précision est, généralement, suffisante. En revanche lorsqu'ils sont utilisés pour caractériser des interrupteurs de puissance, la précision nécessaire ne peut pas être atteinte directement. Les modes opératoires doivent être optimisés et les mesures doivent être corrigées pour obtenir une précision satisfaisante. La mise en place de ces corrections demande du temps et nécessite, souvent, l'utilisation d'un ordinateur. Il est bon, avant de les développer, de s'assurer de leur opportunité. Une première partie de ce travail est consacrée à l'étude des causes d'erreurs et à leur influence sur les résultats de mesure. Nous partons de mesures effectuées, avec les plus grands soins, sur un I.G.B.T. et nous simulons, une à une, les sources d'erreur. Cette étude permet de tirer des critères de choix de matériel de mesure et de juger de la nécessité de certaines corrections. Dans une deuxième partie, nous nous intéressons à la modélisation de l'I.G.B.T. et, plus généralement, des quadripôles électrostatiques non-linéaires. Par comparaison avec les mesures effectuées sur l'I.G.B.T. nous montrons l'influence de la modélisation des capacités non-linéaires de l'I.G.B.T. sur les résultats de simulation.
5

Identification de propriétés thermiques et spectroscopie térahertz de nanostructures par thermoréflectance pompe-sonde asynchrone : application à l'étude du transport des phonons dans les super-réseaux

Pernot, Gilles 26 January 2010 (has links)
Le travail de cette thèse porte sur l’identification et le contrôle des propriétés thermiques et acoustiques de nanostructures à fort potentiel thermoélectrique appelés « Super-réseaux ». Le manuscrit comporte trois parties : La première partie est consacrée à la description théorique des phénomènes de transport thermique par diffusion dans les solides isolants et semi-conducteurs. Nous abordons tout d’abord le point de vue atomique, puis macroscopique en utilisant la méthode des quadripôles thermiques. La fin du chapitre est consacrée aux propriétés acoustiques et thermiques des super-réseaux. La deuxième partie présente et compare les méthodes de Thermoreflectance laser synchrone et asynchrone utilisées pour extraire les propriétés thermiques de couches minces et de super-réseaux. Nous montrons que dans le cas synchrone, les signaux sont soumis à des artefacts modifiant leur allure et rendant difficile l’identification des propriétés thermiques. Dans le cas asynchrone, la suppression de tous les éléments mobiles permet d’obtenir un signal sans artéfact. Nous traitons ensuite des fonctions de sensibilité au modèle développé puis nous validons la méthode d’identification en estimant la conductivité thermique d’un film mince de SiO2. La troisième partie présente les résultats des identifications de la conductivité thermique de différents super-réseaux de SiGe. Nous montrons que les résistances d’interface jouent un rôle majeur dans l’explication de la réduction de la conductivité thermique. Nous étudions également des super-réseaux contenant des îlots de Ge, nous montrons que de telles structures permettent d’obtenir non seulement des conductivités proches de celles des matériaux amorphes, mais le comportement linéaire de la conductivité en fonction de la période montre qu’il est possible de contrôler cette dernière. Enfin, nous utilisons la Thermoreflectance pour réaliser une étude de spectroscopie THz de phonons cohérents dans les super-réseaux et nous mettons en évidence la sélectivité spectrale des ces nanostructures. / The work presented in this thesis deals with identification and control of the thermal and acoustic properties of high thermoelectric potential nanostructures called “superlattices”. This thesis is divided in three parts: The first part gives a theoretical description of thermal diffusion in insulating and semiconducting materials. We first broach the atomic description then the macroscopic view using the Thermal Quadrupole model. The end of this chapter deals with acoustic and thermal properties specific to superlattices. The second part describes and compares synchronous and asynchronous thermoreflectance techniques used to extract thermal properties of thin films and superlattices. We find that for the synchronous case signals are subject to artifacts which confound parameter estimations. For the asynchronous case, we find that lack of a mechanical translation stage removes these artifacts. We then investigate the sensitivity functions, and finally validate our identification method by estimation of the thermal conductivity of a SiO2 thin film. The third part presents the results of thermal parameter identification in SiGe superlattices. We show that thermal interfaces play a major role to in the overall thermal conductivity. We also study superlattices with Ge nanodots and show that for such structures we are able to obtain thermal conductivity values near the amorphous values. Moreover, the linear behavior of the thermal conductivity with period thickness shows that it is possible to control this value. Finally, we use Thermoreflectance to perform THz coherent phonon spectroscopy of superlattices, revealing the spectral selectivity of these nanostructures.

Page generated in 0.0412 seconds