Spelling suggestions: "subject:"cuantitative systems pharmacology"" "subject:"1uantitative systems pharmacology""
1 |
Modeling Startegies for Computational Systems BiologySimoni, Giulia 20 March 2020 (has links)
Mathematical models and their associated computer simulations are nowadays widely used in several research fields, such as natural sciences, engineering, as well as social sciences. In the context of systems biology, they provide a rigorous way to investigate how complex regulatory pathways are connected and how the disruption of these processes may contribute to the develop- ment of a disease, ultimately investigating the suitability of specific molecules as novel therapeutic targets. In the last decade, the launching of the precision medicine initiative has motivated the necessity to define innovative computational techniques that could be used for customizing therapies. In this context, the combination of mathematical models and computer strategies is an essential tool for biologists, which can analyze complex system pathways, as well as for the pharmaceutical industry, which is involved in promoting programs for drug discovery.
In this dissertation, we explore different modeling techniques that are used for the simulation and the analysis of complex biological systems. We analyze the state of the art for simulation algorithms both in the stochastic and in the deterministic frameworks. The same dichotomy has been studied in the context of sensitivity analysis, identifying the main pros and cons of the two approaches. Moreover, we studied the quantitative system pharmacology (QSP) modeling approach that elucidates the mechanism of action of a drug on the biological processes underlying a disease. Specifically, we present the definition, calibration and validation of a QSP model describing Gaucher disease type 1 (GD1), one of the most common lysosome storage rare disorders. All of these techniques are finally combined to define a novel computational pipeline for patient stratification. Our approach uses modeling techniques, such as model simulations, sensitivity analysis and QSP modeling, in combination with experimental data to identify the key mechanisms responsible for the stratification. The pipeline has been applied to three test cases in different biological contexts: a whole-body model of dyslipidemia, the QSP model of GD1 and a QSP model of cardiac electrophysiology. In these test cases, the pipeline proved to be accurate and robust, allowing the interpretation of the mechanistic differences underlying the phenotype classification.
|
2 |
Improving the use of G-CSF during chemotherapy using physiological mathematical modelling : a quantitative systems pharmacology approachCraig, Morgan 12 1900 (has links)
La diminution des doses administrées ou même la cessation complète d'un traitement chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutrophiles, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, parallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules saines. Dans le but d'atténuer cet impact myélosuppresseur, on administre aux patients un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF), une forme exogène du G-CSF, l'hormone responsable de la stimulation de la production des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bienfaits d'un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien établis, les protocoles d'administration demeurent mal définis et sont fréquemment déterminés ad libitum par les cliniciens. Avec l'optique d'améliorer le dosage thérapeutique et rationaliser l'utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous avons développé un modèle physiologique du processus de granulopoïèse, qui incorpore les connaissances actuelles de pointe relatives à la production des neutrophiles des cellules souches hématopoïétiques dans la moelle osseuse. À ce modèle physiologique, nous avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux médicaments: le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF (filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous avons estimé les paramètres de manière exhaustive sans devoir recourir à l'ajustement des données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où l'administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utilisant ce modèle physio-PK/PD, nous avons démontré que le nombre d'administrations du rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administrations, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans un souci d'applicabilité clinique de notre approche de modélisation, nous avons investigué l'impact de la variabilité PK présente dans une population de patients, sur les prédictions du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments. En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des neutrophiles, la valeur du nadir, ainsi que l'aire sous la courbe concentration-effet, nous avons établi qu'il n'y avait aucune différence significative dans les prédictions du modèle entre le patient-type et la population. Ceci démontre la robustesse de l'approche que nous avons développée et qui s'apparente à une approche de pharmacologie quantitative des systèmes (QSP).
Motivés par l'utilisation du rhG-CSF dans le traitement d'autres maladies, comme des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite soumis l'étude du modèle au contexte des maladies dynamiques. En mettant en évidence la non validité du paradigme de la rétroaction des cytokines pour l'administration exogène des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD novateur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l'hypothèse sous-jacente de l'équilibre entre la concentration libre et liée, selon la loi d'action de masse, n'est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la surestimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à reproduire des données cliniques obtenues dans diverses conditions (l'administration exogène du G-CSF, l'administration du PM00104, CHOP14). Nous avons aussi fourni une explication logique des mécanismes responsables de la réponse physiologique aux deux médicaments.
Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disciplines scientifiques telles que la paléontologie et la forensique, où une approche semblable a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie quantitative des systèmes appliquées au développement du médicament et à la médecine translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point. / Dose-limitation or interruption of chemotherapeutic treatment is most often prompted by a decrease in circulating neutrophils, the most abundant white blood cell in the human body. Myelosuppression, or a reduction in absolute neutrophil counts (ANCs) by anti-cancer treatments, is precipitated by the nonspecific killing effect of chemotherapeutic drugs which have toxic effects on noncancerous cells. To mitigate this myelosuppressive effect, patients are frequently administered recombinant human granulocyte colony-stimulating factor (rhG-CSF), an exogenous form of the cytokine G-CSF, which stimulates neutrophil production and release into the blood stream. While the benefits of adjuvant treatment rhG-CSF during chemotherapy are well recognised, the protocols with which it is administered are not well defined and are frequently determined ad libitum by clinicians. To quantify and address the optimisation of the administration of rhG-CSF during chemotherapeutic treatment, we developed a physiological model of granulopoiesis which incorporates the contemporary understanding of the production of neutrophils from the hematopoietic stem cells in the bone marrow. To this physiological model, we incorporated mechanistic pharmacokinetic/pharmacodynamic (PK/PD) models of two drugs, PM00104 (Zalypsis), a chemotherapeutic drug, and rhG-CSF (filgrastim). Through exhaustive parameter estimation using first principles and no data fitting, we successfully predicted clinical data from 172 patients for an average patient undergoing the CHOP14 protocol (6 cycles of 14-day periodic chemotherapy with rhG-CSF administered on days 4-13 post-chemotherapy). We then demonstrated that delaying the administration of rhG-CSF to 6 or 7 days post-chemotherapy allowed for a reduction in the number of filgrastim administrations from ten to four or even three while maintaining or improving the neutrophil nadir. We also investigated the effects of PK variability on the model's predictions by incorporating population PK (PopPK) models of both drugs. Using five different variability scenarios and cohorts of 500 in silico patients per scenario, we established that there are no statistically significant differences between a typical patient and the population in the model's predictions with respect to three crucial clinical endpoints, namely the time to ANC nadir, the ANC nadir, and the area under the concentration-effect curve. The model's robustness to PK variability allows for the scaling up from the individual to population level.
Motivated by the use of rhG-CSF in other disease-states, namely periodic pathologies like cyclical neutropenia, we next endeavoured to contextualise the model within dynamic diseases. By bringing to light that the cytokine paradigm is broken when exogenous cytokine mimetics are administered, we developed a novel physiological PK model for G-CSF incorporating both unbound and bound concentrations. The updated PK model prompted changes to the PD model since we could now track the concentrations of bound G-CSF. We showed that the mass-action equilibrium hypopthesis for bound and unbound drugs is not valid and led to overestimations of the renal clearance of G-CSF. We also successfully reproduced clinical data in a variety of settings (exogenous G-CSF alone, PM00104 alone, CHOP14 protocol) and clarified the mechanisms underlying the body's response to both drugs. Lastly, we discussed the potential of quantitative systems pharmacology in both drug development and translational medicine by using the physiological PK/PD model we developed.
|
3 |
Towards systems pharmacology models of druggable targets and disease mechanismsKnight-Schrijver, Vincent January 2019 (has links)
The development of essential medicines is being slowed by a lack of efficiency in drug development as ninety per cent of drugs fail at some stage during clinical evaluation. This attrition in drug development is seen not because of a reduction in pharmaceutical research expenditure nor is it caused by a declining understanding of biology, if anything, these are both increasing. Instead, drugs are failing because we are unable to effectively predict how they will work before they are given to patients. This is due to limitations of the current methods used to evaluate a drug's toxicity and efficacy prior to its development. Quite simply, these methods do not account for the full complexity of biology in humans. Systems pharmacology models are a likely candidate for increasing the efficiency of drug discovery as they seek to comprehensively model the fundamental biology of disease mechanisms in a quantit- ative manner. They are computational models, designed and hailed as a strategy for making well-informed and cost effective decisions on drug viability and target druggability and therefore attempt to reduce this time-consuming and costly attrition. Using text mining and text classification I present a growing landscape of systems pharmacology models in literature growing from humble roots because of step-wise increases in our understanding of biology. Furthermore, I develop a case for the capability of systems pharmacology models in making predictions by constructing a model of interleukin-6 signalling for rheumatoid arthritis. This model shows that druggable target selection is not necessarily an intuitive task as it results in an emergent but unanswered hypothesis for safety concerns in a monoclonal antibody. Finally, I show that predictive classification models can also be used to explore gene expression data in a novel work flow by attempting to predict patient response classes to an influenza vaccine.
|
4 |
Étude par pharmacologie quantitative du système dopaminergique des ganglions de la base pour l’optimisation de la pharmacothérapie. Modèle unificateur pour la maladie de Parkinson et le TDAHVéronneau-Veilleux, Florence 04 1900 (has links)
La dopamine est un neurotransmetteur important dans le fonctionnement des ganglions
de la base, région du cerveau impliquée dans la fonction motrice et l’apprentissage. Un
dérèglement de la dynamique de la dopamine peut être à l’origine de différentes pathologies
neurologiques, telles que la maladie de Parkinson et le trouble de déficit de l’attention avec
ou sans hyperactivité (TDAH). La lévodopa, un précurseur de la dopamine, est utilisée pour
réduire les symptômes associés à la maladie de Parkinson, sans action directe sur ses causes.
La lévodopa est très efficace au début de la maladie, mais la durée de son effet ainsi que son
index thérapeutique diminuent avec la progression de la dénervation induite par la maladie.
Ces changements compliquent considérablement l’optimisation des régimes posologiques. Le
méthylphénidate, quant à lui, est administré pour réduire les symptômes du TDAH et agit
entre autres en bloquant la recapture de la dopamine. Bien que les données confirment une
certaine implication de la dopamine dans le TDAH, son étiologie exacte demeure inconnue.
Peu d’études ont cerné l’effet de la lévodopa sur le système dopaminergique des ganglions
de la base et son évolution avec la progression de la maladie. Aussi, bien que le TDAH
ait suscité beaucoup d’intérêt, rares sont les études quantitatives de nature mécanistiques
sur le sujet. L’approche de modélisation mathématique utilisée dans cette thèse s’inscrit
dans un effort global visant l’optimisation de la lévodopa et du méthylphénidate, appuyé
par l’élucidation des mécanismes impliqués dans la maladie de Parkinson et dans le TDAH.
En adoptant une approche de pharmacologie quantitative des systèmes (QSP), nous avons
développé un modèle intégratif du système dopaminergique des ganglions de la base, avec
l’objectif d’élucider les mécanismes impliqués, d’évaluer l’impact de la dopamine chez dessujets souffrant de Parkinson ou de TDAH, et recevant ou non un traitement, et enfin de guider
objectivement l’exercice d’optimisation des régimes posologiques. À notre connaissance,
c’est le premier cadre unificateur de modélisation qui s’adresse à ces deux pathologies.
Le modèle développé dans cette thèse est composé de trois sous-modèles : le premier décrit
la pharmacocinétique du médicament concerné, soit la lévodopa ou le méthylphénidate ;
le deuxième exprime mathématiquement les différents mécanismes impliqués dans la dynamique
de la dopamine ; le troisième représente la complexité de la neurotransmission dans les
ganglions de la base. Avec des adaptations appropriées, nous avons appliqué ce même modèle
au contexte de la maladie de Parkinson et au TDAH, ainsi qu’à leurs thérapies respectives.
Pour représenter physiologiquement la maladie de Parkinson, nous avons intégré dans le
modèle l’évolution de la perte neuronale ainsi que les différents mécanismes de compensation
qui en résultent. La fréquence de tapotement des doigts est utilisée comme mesure clinique
de la bradykinésie, définie comme le ralentissement des mouvements chez les patients parkinsoniens.
Le modèle développé se base sur les connaissances actuelles de la pathophysiologie
et pharmacologie du Parkinson, assurant ainsi sa validité en comparaison à des observations
expérimentales et cliniques. Ensuite, à l’aide de ce modèle, les relations non-linéaires entre
la concentration plasmatique de lévodopa, la concentration en dopamine dans le cerveau et
la réponse à une tâche motrice sont étudiées. Le rétrécissement de l’index thérapeutique de
la lévodopa au cours de la progression de la maladie dû à ces non-linéarités est investigué.
Enfin, pour assurer l’aspect translationnel de notre approche, nous avons développé une application
web à laquelle ce modèle a été intégré. Cette application sert de preuve de concept
à un outil facilitant l’optimisation et l’individualisation des régimes posologiques.
Pour l’étude du TDAH, nous avons adapté le modèle du système dopaminergique en
y intégrant la libération tonique et phasique de la dopamine, cette dernière se produisant
durant une tâche d’apprentissage par renforcement. Des individus virtuels ont été créés avec
et sans déséquilibre du ratio tonique/phasique de la dopamine. En simulant une tâche de
réponse à des stimuli dans un contexte de déséquilibre de la dopamine, le modèle nous a
permis d’observer des symptômes similiaires à ceux de patients réels souffrant de TDAH.
Finalement, la réponse au méthylphénidate résultant de l’inhibition de la recapture de la
dopamine, à travers différents scénarios d’apprentissage a aussi été étudiée. Le développement
d’une métrique nous a permis de différencier les répondants des non-répondants, et
ainsi de mettre en évidence l’implication possible d’un apprentissage excessif chez les nonrépondants.
Une meilleure compréhension de la réponse au méthylphénidate permettrait
d’éviter la surmédication chez les non-répondants et d’aider les cliniciens dans leur pratique.
Malgré la complexité du système dopaminergique et des traitements associés, cette thèse
est un pas en avant dans la compréhension des mécanismes sous-jacents et de leur implication
dans la thérapie. Ces avancées ont été réalisées en adoptant une approche de pharmacologie
quantitative des systèmes, associée à une modélisation neurocomputationnelle du
domaine du génie électrique, et complétée par un aspect de transfert au chevet du patient.
Ce n’est qu’en transcendant ainsi les frontières disciplinaires qu’une visée aussi globale et
intégrative est possible, afin de faire face aux défis multidimensionnels du système de la santé. / Dopamine is an important neurotransmitter of the basal ganglia, a region of the brain
involved in motor function and learning. Disruption of dopamine dynamics can cause various
neurological conditions, such as Parkinson’s disease and attention deficit hyperactivity disorder
(ADHD). Levodopa, a dopamine precursor, is used to reduce the symptoms associated
with Parkinson’s disease, without directly alleviating its causes. Levodopa is very effective
in the early stages of the disease, but its effect duration along with its therapeutic index
decrease with disease-induced denervation. These modifications further challenge determination
of optimal dosing regimens of levodopa. In the case of ADHD, methylphenidate is
administered to reduce its symptoms by, among other things, blocking dopamine recapture.
Although evidence supports involvement of dopamine in ADHD, its exact etiology remains
unknown.
Few studies have investigated the effect of levodopa on the basal ganglia dopaminergic
system and how it evolves with disease progression. Also, although ADHD has received a
lot of interest, few quantitative studies of a mechanistic nature have been conducted on the
subject. The mathematical modeling approach used in this thesis is part of an overall effort
to optimize levodopa and methylphenidate, supported by the elucidation of the mechanisms
involved in Parkinson’s disease and ADHD. Using a quantitative systems pharmacology
(QSP) approach, we have developed an integrative model of the basal ganglia dopaminergic
system, with the objective of elucidating the mechanisms involved, assessing the impact of
dopamine in subjects with Parkinson’s or ADHD, with and without treatment, and objectively
guiding the dosing regimens optimization. To the best of our knowledge, this is the first
unifying modeling framework that addresses at the same time these two pathologies and
their therapies.
The model developed in this thesis includes three sub-models: the first one describes
the drug pharmacokinetics, either levodopa or methylphenidate; the second one translates
mathematically the different mechanisms involved in the dopamine dynamics; the third one is
a computational representation of the complexity of neurotransmission in the basal ganglia.
With appropriate adaptations, we have applied this same model to the context of Parkinson’s
disease and ADHD, as well as to their respective pharmacotherapies.
In order to physiologically represent Parkinson’s disease, we have integrated the denervation
process in the model as well as the resulting compensation mechanisms. The finger
tapping frequency is used as a clinical endpoint of bradykinesia, defined as the slowing of
movements. The developed model is based on up-to-date knowledge of the pathophysiology
and pharmacology of Parkinson’s disease, thus ensuring its validity in comparison with experimental
and clinical observations. Using this model, the non-linear relationships between
plasma levodopa concentration, dopamine concentration in the brain and response to a motor
task were studied. The narrowing of levodopa therapeutic index during the progression of
the disease due to these non-linearities was investigated. Finally, to ensure the translational
aspect of our approach, we developed a web application in which this model was integrated.
This application serves as a proof of concept for a tool aimed to facilitate the optimization
and individualization of dosing regimens.
For the study of ADHD, we adapted the developed model by integrating tonic and phasic
dopamine release, the latter occurring during a reinforcement learning task. Virtual individuals
were created with and without dopamine imbalance in the tonic/phasic ratio. By
simulating a stimulus-response task, we observe ADHD-like symptoms among virtual patients
with dopamine imbalance. Finally, the response to methylphenidate resulting from
dopamine recapture inhibition, through different learning scenarios, was also studied. The
development of a metric allowed us to differentiate responders from non-responders, and thus
to highlight the possible implication of excessive learning in non-responders. A better understanding
of methylphenidate response would help avoid overmedication in non-responders
and assist clinicians in their practice.
Despite the complexity of the dopaminergic system and its associated therapies, this
thesis is a step forward in understanding the underlying mechanisms and their involvement
in pharmacotherapy. These advances were achieved by adopting a quantitative systems
pharmacology approach, combined with neurocomputational modeling borrowed from the
electrical engineering field, and complemented by a translational bedside aspect. It is only
by transcending disciplinary boundaries and adopting such an integrative approach that
this ultimate goal of having a real impact on the multifaceted health system is possible.
|
5 |
Effet des antirétroviraux sur la pathogénèse du VIH : une étude par modélisation mathématique intégrant la cinétique du virus, de l’immunité, du médicament, et le comportement d’adhésion avec leurs variabilités interindividuellesSanche, Steven 08 1900 (has links)
No description available.
|
Page generated in 0.1205 seconds