• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

First principles-based atomistic modeling of the interfacial microstructure and capacitance of graphene

Paek, Eunsu 04 March 2014 (has links)
Graphene has been extensively studied for possible future technical applications due to its unique electronic, transport, and mechanical properties. For practical applications, graphene often needs to be placed in a medium or on a substrate. The interfacial interaction between graphene and other materials can greatly affect the performance of graphene-based devices, but has not been well explored. My thesis research focused on developing a better understanding of the interface of pristine and chemically/mechanically modified graphene sheets with ionic liquids (ILs) as well as amorphous silica (a-SiO₂) surfaces using first principles-based atomistic modeling which combines density functional theory, classical molecular dynamics, and Metropolis Monte Carlo. The major focus of my thesis research was on investigating the interfacial structure and capacitance between graphene and ILs; graphene-based materials and ILs have been regarded as viable candidates for supercapacitor electrodes and electrolytes, respectively. Particular emphasis was placed on elucidating the relative contributions of the electric double layer (EDL) capacitance at the graphene/IL interface and the quantum capacitance of graphene-like electrodes. More specifically, we first determined the microstructure (such as orientation, packing density, cation-anion segregation) of chosen ILs near planar graphene electrodes with various surface charge densities. Based on the calculated IL microstructure for each system, the EDL capacitance was then evaluated with particular attention to the effect of cation-anion size difference. We also examined the influence of the chemical and mechanical modifications of graphene-like electrodes on the supercapacitor performance. Especially, mechanisms underlying chemical doping-induced enhancement of the total interfacial capacitance were addressed through analysis of electrode quantum capacitance changes resulting from electronic structure modifications. A part of my effort was also devoted to examining the binding interaction of graphene with a-SiO₂ (which is not yet clearly understood despite its scientific and technological importance). In particular, we attempted to evaluate quantitatively the adsorption strength of graphene on the a-SiO₂ surface, which has been under debate mainly due to the difficulty of direct measurement. / text
2

Charge Transport and Quantum Capacitance of Graphene

January 2010 (has links)
abstract: Graphene, a one atomic thick planar sheet of carbon atoms, has a zero gap band structure with a linear dispersion relation. This unique property makes graphene a favorite for physicists and engineers, who are trying to understand the mechanism of charge transport in graphene and using it as channel material for field effect transistor (FET) beyond silicon. Therefore, an in-depth exploring of these electrical properties of graphene is urgent, which is the purpose of this dissertation. In this dissertation, the charge transport and quantum capacitance of graphene were studied. Firstly, the transport properties of back-gated graphene transistor covering by high dielectric medium were systematically studied. The gate efficiency increased by up to two orders of magnitude in the presence of a high top dielectric medium, but the mobility did not change significantly. The results strongly suggested that the previously reported top dielectric medium-induced charge transport properties of graphene FETs were possibly due to the increase of gate capacitance, rather than enhancement of carrier mobility. Secondly, a direct measurement of quantum capacitance of graphene was performed. The quantum capacitance displayed a non-zero minimum at the Dirac point and a linear increase on both sides of the minimum with relatively small slopes. The findings - which were not predicted by theory for ideal graphene - suggested that scattering from charged impurities also influences the quantum capacitance. The capacitances in aqueous solutions at different ionic concentrations were also measured, which strongly suggested that the longstanding puzzle about the interfacial capacitance in carbon-based electrodes had a quantum origin. Finally, the transport and quantum capacitance of epitaxial graphene were studied simultaneously, the quantum capacitance of epitaxial graphene was extracted, which was similar to that of exfoliated graphene near the Dirac Point, but exhibited a large sub-linear behavior at high carrier density. The self-consistent theory was found to provide a reasonable description of the transport data of the epitaxial graphene device, but a more complete theory was needed to explain both the transport and quantum capacitance data. / Dissertation/Thesis / Ph.D. Electrical Engineering 2010
3

Transport properties of graphene based van der Waals heterostructures

Yu, Geliang January 2015 (has links)
In the past few years, led by graphene, a large variety of two dimensional (2D) materials have been discovered to exhibit astonishing properties. By assembling 2D materials with different designs, we are able to construct novel artificial van der Waals (vdW) heterostructures to explore new fundamental physics and potential applications for future technology. This thesis describes several novel vdW heterostructures and their fundamental properties. At the beginning, the basic properties of some 2D materials and assembled vdW heterostructures are introduced, together with the fabrication procedure and transport measurement setups. Then the graphene based capacitors on hBN (hexagonal Boron Nitride) substrate are studied, where quantum capacitance measurements are applied to determine the density of states and many body effects. Meanwhile, quantum capacitance measurement is also used to search for alternative substrates to hBN which allow graphene to exhibit micrometer-scale ballistic transport. We found that graphene placed on top of MoS2 and TaS2 show comparable mobilities up to 60,000cm2/Vs. After that, the graphene/hBN superlattices are studied. With a Hall bar structure based on the superlattices, we find that new Dirac minibands appear away from the main Dirac cone with pronounced peaks in the resistivity and are accompanied by reversal of the Hall effects. With the capacitive structure based on the superlattices, quantum capacitance measurement is used to directly probe the density states in the graphene/hBN superlattices, and we observe a clear replica spectrum, the Hofstadter-butterfly fan diagram, together with the suppression of quantum Hall Ferromagnetism. In the final part, we report on the existence of the valley current in the graphene/hBN superlattice structure. The topological current originating from graphene’s two valleys flows in opposite directions due to the broken inversion symmetry in the graphene/hBN superlattice, meaning an open band gap in graphene.
4

Advanced Channel Engineering in III-Nitride HEMTs for High Frequency Performance

Park, Pil Sung January 2013 (has links)
No description available.
5

Device Structure And Material Exploration For Nanoscale Transistor

Majumdar, Kausik 06 1900 (has links) (PDF)
There is a compelling need to explore different material options as well as device structures to facilitate smooth transistor scaling for higher speed, higher density and lower power. The enormous potential of nanoelectronics, and nanotechnology in general, offers us the possibility of designing devices with added functionality. However, at the same time, the new materials come with their own challenges that need to be overcome. In this work, we have addressed some of these challenges in the context of quasi-2D Silicon, III-V semiconductor and graphene. Bulk Si is the most widely used semiconductor with an indirect bandgap of about 1.1 eV. However, when Si is thinned down to sub-10nm regime, the quasi-2D nature of the system changes the electronic properties of the material significantly due to the strong geometrical confinement. Using a tight-binding study, we show that in addition to the increase in bandgap due to quantization, it is possible to transform the original in direct bandgap to a direct one. The effective masses at different valleys are also shown to vary uniquely in an anisotropic way. This ultra-thin Si, when used as a channel in a double gate MOSFET structure, creates so called “volume in version” which is extensively investigated in this work. It has been found that the both the quantum confinement as well as the gating effect play a significant role in determining the spatial distribution of the charge, which in turn has an important role in the characteristics of transistor. Compound III-V semiconductors, like Inx Ga1-xAs, provide low effective mass and low density of states. This, when coupled with strong confinement in a nanowire channel transistor, leads to the “Ultimate Quantum Capacitance Limit” (UQCL) regime of operation, where only the lowest subband is occupied. In this regime, the channel capacitance is much smaller than the oxide capacitance and hence dominates in the total gate capacitance. It is found that the gate capacitance change qualitatively in the UQCL regime, allowing multi-peak, non-monotonic capacitance-voltage characteristics. It is also shown that in an ideal condition, UQCL provides improved current saturation, on-off ratio and energy-delay product, but a degraded intrinsic gate delay. UQCL shows better immunity towards series resistance effect due to increased channel resistance, but is more prone to interfacial traps. A careful design can provide a better on-off ratio at a given gate delay in UQCL compared to conventional MOSFET scenario. To achieve the full advantages of both FinFET and HEMT in III-V domain, a hybrid structure, called “HFinFET” is proposed which provides excellent on performance like HEMT with good gate control like FinFET. During on state, the carriers in the channel are provided using a delta-doped layer(like HEMT) from the top of a fin-like non-planar channel, and during off state, the gates along the side of the fin(like FinFET) help to pull-off the carriers from the channel. Using an effective mass based coupled Poisson-Schrodinger simulation, the proposed structure is found to outperform the state of the art planar and non-planar MOSFETs. By careful optimization of the gate to source-drain underlap, it is shown that the design window of the device can be increased to meet ITRS projections at similar gate length. In addition, the performance degradation of HFinFET in presence of interface traps has been found to be significantly mitigated by tuning the underlap parameter. Graphene is a popular 2D hexagonal carbon crystal with extraordinary electronic, mechani-cal and chemical properties. However, the zero band gap of grapheme has limited its application in digital electronics. One could create a bandgap in grapheme by making quasi-1D strips, called nanoribbon. However, the bandgap of these nanoribbons depends on the the type of the edge, depending on which, one can obtain either semiconducting or metallic nanoribbon. It has been shown that by the application of an external transverse field along the sides of a nanoribbon, one could not only modulate the magnitude of the bandgap, but also change it from direct to indirect. This could open up interesting possibilities for novel electronic and optoelectronic applications. The asymmetric potential distribution inside the nanoribbon is found to result in such direct to indirect bandgap transition. The corresponding carrier masses are also found to be modulated by the external field, following a transition from a“slow”electron to a“fast” electron and vice-versa. Experimentally, it is difficult to control the bandgap in nanoribbons as precise edge control at nanometer scale is nontrivial. One could also open a bandgap in a bilayer graphene, by the application of vertical electric field, which has raised a lot of interest for digital applications. Using a self-consistent tight binding theory, it is found that, inspite of this bandgap opening, the intrinsic bias dependent electronic structure and the screening effect limit the subthreshold slope of a metal source drain bilayer grapheme transistor at a relatively higher value-much above the Boltzmann limit. This in turn reduces the on-off ratio of the transistor significantly. To overcome this poor on-off ratio problem, a semiconductor source-drain structure has been proposed, where the minority carrier injection from the drain is largely switched off due to the bandgap of the drain. Using a self-consistent Non-Equilibrium Green’s Function(NEGF) approach, the proposed device is found to be extremely promising providing unipolar grapheme devices with large on-off ratio, improved subthreshold slope and better current saturation. At high drain bias, the transport properties of grapheme is extremely intriguing with a number of nontrivial effects. Optical phonons in monolayer grapheme couple with carriers in a much stronger way as compared to a bilayer due to selection rules. However, it is difficult to experimentally probe this through transport measurements in substrate supported grapheme as the surface polar phonons with typical low activation energy dominates the total scattering. However, at large drain field, the carriers obtain sufficient energy to interact with the optical phonons, and create so called ‘hot phonons’ which we have experimentally found to result in a negative differential conductance(NDC). The magnitude of this NDC is found to be much stronger in monolayer than in bilayer, which agrees with theoretical calculations. This NDC has also been shown to be compensated by extra minority carrier injection from drain at large bias resulting in an excellent current saturation through a fundamentally different mechanism as compared to velocity saturation. A transport model has been proposed based on the theory, and the experimental observations are found to be in agreement with the model.
6

Effect of the voltage dependency of the device-level gate-source capacitance in the linearity of a common-gate amplifier

Eduardo A. Garcia (5929682) 19 July 2022 (has links)
<p>Most work on amplifier linearity has focused on the transconductance (gm) linearity, but there is increasing evidence that the voltage-dependence of the gate-source capacitance (Cgs) plays an important role in the linearity of emerging devices. This work addresses the capacitance contribution by incorporating the nonlinearities attributed to the voltage dependency of Cgs of a general FET on a circuit-level Cg amplifier model.</p> <p>An amplifier model including a voltage-dependent Cgs, and a voltage-dependent gm is studied using harmonic analysis and Volterra series. A closed form expression for the  third-order intercept point (IP3) of the amplifier, which depends on the nonlinear coefficients of Cgs, is obtained. A simple design rule, and a formula for the reduction of the IP3 due to the voltage-dependent Cgs are also presented. </p> <p>As application examples, the linearity of an amplifier based on a specific device is analyzed for two cases by extracting the nonlinear circuit parameters of the device. First for an analytic model of a bulk mosfet. Second for a one-dimensional, ballistic, coaxially gated Si nanowire. For low frequencies of design, the distortion introduced by gm is predominant, but for high frequencies it is obscured by the distortion coming from Cgs.</p> <p>We conclude that taking into account the voltage-dependence of Cgs is crucial when predicting the linearity behavior of a Cg amplifier, either designed for high-frequency operation, or based on a device operating near the quantum capacitance limit. </p>
7

Charge dynamics in superconducting double dots

Esmail, Adam Ashiq January 2017 (has links)
The work presented in this thesis investigates transitions between quantum states in superconducting double dots (SDDs), a nanoscale device consisting of two aluminium superconducting islands coupled together by a Josephson junction, with each dot connected to a normal state lead. The energy landscape consists of a two level manifold of even charge parity Cooper pair states, and continuous bands corresponding to charge states with single quasiparticles in one or both islands. These devices are fabricated using shadow mask evaporation, and are measured at sub Kelvin temperatures using a dilution refrigerator. We use radio frequency reflectometry to measure quantum capacitance, which is dependent on the quantum state of the device. We measure the quantum capacitance as a function of gate voltage, and observe capacitance maxima corresponding to the Josephson coupling between even parity states. We also perform charge sensing and detect odd parity states. These measurements support the theoretical model of the energy landscape of the SDD. By measuring the quantum capacitance in the time domain, we observe random switching of capacitance between two levels. We determine this to be the stochastic breaking and recombination of single Cooper pairs. By carrying out spectroscopy of the bath responsible for the pair breaking we attribute it to black-body radiation in the cryogenic environment. We also drive the breaking process with a continuous microwave signal, and find that the rate is linearly proportional to incident power. This suggests that a single photon process is responsible, and demonstrates the potential of the SDD as a single photon microwave detector. We investigate this mechanism further, and design an experiment in which the breaking rate is enhanced when the SDD is in the antisymmetric state rather than the symmetric state. We also measure the quantum capacitance of a charge isolated double dot. We observe 2e periodicity, indicating the tunnelling of Cooper pairs and the lack of occupation of quasiparticle states. This work is relevant to the range of experiments investigating the effect of non-equilibrium quasiparticles on the operation of superconducting qubits and other superconducting devices.

Page generated in 0.0777 seconds